
N
oise had a glorious birth. It was one of the three miracles of the miracle year, 1905.
Einstein, always aiming to solve the greatest of problems and to solve them simply,
saw that noise could be the instrument to establish one of the greatest ideas of all
time—the existence of atoms. In a few simple pages he invented noise, and thus
“noise” was born. Immediately after Einstein, there was an incredible flurry of

ideas of the most profound kind which continues to this day. Noise permeates every field of sci-
ence and technology and has been instrumental in solving great problems, including the origin
of the universe. But noise, considered by many as unwanted and mistakenly defined as such by
some, has little respectability. The term itself conjures up images of rejection. Yet it is an idea
that has served mankind in the most profound ways. It would be a dull, gray world without noise.
The story of noise is fascinating, and while in its early stages, noise’s story was clearly told, its
subsequent divergence into many subfields has often resulted in a lack of understanding of its
historical origins, development, and importance. We try to give it some justice. We discuss who
did what, when, and why, and the historical misconceptions. But most importantly, we aim to
show that the story of noise is an exciting story, filled with drama, and worth telling.
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The History of NoiseThe History of Noise



IEEE SIGNAL PROCESSING MAGAZINE [21] NOVEMBER 2005

INTRODUCTION TO NOISE
“Noise,” as an idea, a subject, a field, an instrument, came upon
the scene with a power and swiftness that transformed all of sci-
ence and our views of the nature of matter. At birth, it solved the
major issue of its time, perhaps, the greatest idea of all time—the
existence of atoms. The debate on the reality of atoms had
reached a crescendo. The debaters were the greatest of scientists;
there was no middle ground, either atoms exist or they do not.
The bitterness of the atomists and anti-atomists got extreme, and
while no one dreamed of seeing an atom, everyone knew they
were debating the greatest of issues:

“If . . . all of scientific knowledge were to be destroyed, and
only one sentence passed on to the next generations of crea-
tures . . .  it is . . . all things are made of atoms.”

—Richard Feynman

As it turned out, not only do atoms exist, but they are the
most exquisite creation of nature; neither the solar system,
galaxies, nor anything else can rival the atom’s simple complexi-
ty. The 19th century, the century of great achievements—ther-

modynamics, electromagnetism, chemistry, and the industrial
revolution—did not need the “atom.” Yet, it was the century of
the atomist debate, a debate that raged into the beginning of the
20th century; until Einstein, always aiming at the greatest of
problems, and aiming to solve them simply, saw the instrument
to prove their existence! In a few simple pages he invented noise
and thus “noise” was born. This was in 1905. Things moved
quickly. Within a few years, Perrin verified Einstein’s main pre-
diction and also his prediction that noise could be used to calcu-
late Avogadro’s number! Avogadro, who came up with one of the
most profound ideas of all time, died without any recognition,
never dreamed that there would be a number named after him,
and certainly he, nor anyone else, could have imagined that
noise would be the instrument for its calculation and for the
awarding of a Nobel Prize.

It was the end of the anti-atomists but the beginning of the
proud history of noise. Immediately after Einstein, there was a
flurry of ideas of the most profound kind that continues to this
day. Within three years, Langevin started the field of stochastic
differential equations, although that was not his motivation.
There were numerous important contributions that laid both
the foundation of “noise” and its application to many fields. The
historical twists are fascinating. Who could have imagined that
the search for atmospheric noise would lead to the discovery of
the noise at the origin of the universe and establish the “big
bang” theory of the universe?

But noise, considered by many as unwanted, and mistakenly
defined as such by some, has little respectability. The term con-
jures up images of rejection, images of building filters to elimi-
nate it. Yet it is an idea that has served mankind in the most
profound ways. It would, indeed, be a dreary world without noise.

It is now 100 years since Einstein devised “noise.” Noise per-
meates every field of science, and every field seems to have its
own version of its history. While some fields tell it almost prop-
erly, most don’t. The often told version—that Brown discovered,
Einstein explained, Langevin simplified, and Perrin verified—is
a serious historical distortion. But more importantly, it leaves
out the drama and excitement of the story. The story of noise is
a fascinating one, but its divergence into many subfields has
often resulted in a lack of understanding of noise’s true histori-
cal development. We try to give it some justice and discuss who
were the main players, who did what, when, and why, and the
reasons for the impact on so many fields. But more importantly,
we aim to show that the history of noise is a tale worth telling.
We hope, though, that we do not say any more than most read-
ers want to know.

HISTORY AND SCIENCE HISTORY
Almost every school child since the dawn of school has hated
the study of standard “history.” Rightfully so, since it is as bor-
ing as things can be. In one way or another, we are told that
history is important. And in one way or another, we are told, as
Santayana put it, “Those who cannot learn from history are
doomed to repeat it.” This is certainly one of the silliest things
ever said. Presumably, what is lamented here are the horrible
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things like wars that we don’t wish to repeat, yet since the
dawn of history almost all leaders were given the finest of
schooling in history. If anything, the leaders learned history so
that they could repeat it. To be fair to Santayana, he also said
“History is a pack of
lies about events
that never happened
told by people who
weren’t there.” It
would be a new
world, perhaps even
a braver one, if we
admitted the obvious, as expressed by Huxley, “That men do
not learn very much from the lessons of history is the most
important of all the lessons of history.”

On the other hand, science history is exciting and inspir-
ing. Moreover, it is a great way to learn science. It is truly fas-
cinating to learn how the greatest of minds came up with the
greatest of ideas, and that
makes science history enter-
taining. Moreover, it is a fact
that if one is trying to learn
an idea, the originator is the
place to go. It is often much
more instructive to read the
original papers on a subject
than to learn it from a text-
book. If the original author is
a clear writer, which is often
the case with great scientists
and mathematicians, we see
the simplicity of their argu-
ments, motivations, and rea-
sons much clearer than in
subsequent presentations.
This is particularly so in the
case of noise. If one, for
example, wants to get an idea
of what stochastic differential
equations are all about, the
original papers of Langevin,
Ornstein, Uhlenbeck, and
Chandrasekhar are worth
hundreds of current books on
the subject. Moreover, in the
case of noise, we have
Einstein, one of the simplest
and clearest writers ever. The
introductions, or just the first
paragraphs, of his papers or
writings are simple, clear, powerful, and fascinating to read.
Simply reading them is an incredible education because he
gets to the essence of the subject with remarkable simplicity
and clarity. Fortunately, he left a voluminous amount of writ-
ings on a wide variety of subjects.

EINSTEIN: WHY HE DID IT
Einstein is popularly imagined as a demigod who never changed
his clothing, whose sweaters had holes, who was always immersed
in deep thought so advanced that no one could understand him,

who was always right
about everything,
and whose photo-
graphs in newspapers
always fostered that
impression. Forget
that image and forget
that Einstein was

interested in explaining Brownian motion, the erratic move-
ment of pollen and dust. Einstein was straightforward, direct,
always clear, ambitious in an honorable sense, and, for whatev-
er reasons, conscious or subconscious, decided that he would
tackle the biggest problems and that he would attack them sim-
ply. Look at a picture of Einstein as a young man, and you will

not see the mythical Einstein
(Figure 1). Read his writings,
and you will see the simplicity
of his motives and desires. And
certainly his letters, and his
love letters are of a man who
knew what he wanted.

So, again, forget the often-
stated notion that Einstein
wanted to explain the erratic
movement of pollen in water.
He was after proving that
atoms exist! Moreover, he went
after the ultimate method that
defines greatness in science.
Predict an effect, derive a spe-
cific formula, let the world
perform the experiments, and
there you have it. Einstein
searched for a manifestation of
these invisible atoms that
could be seen and measured.
So Einstein said, if atoms exist,
then I predict an effect and I
derive a specific formula relat-
ing to the effect, and if this for-
mula is verified, then . . . !
With the courage to say and
derive it all in a few simple
pages, he predicts a macro-
scopic manifestation of atoms.
Within a few years, his predic-

tion was proven true and changed the tide: everyone believed
in atoms even though no one saw them.

It was 1905 and Einstein’s first Brownian motion paper
was one of the four papers that would constitute the three
miracles of the miracle year [1]. The title says it all: “On the

IEEE SIGNAL PROCESSING MAGAZINE [22] NOVEMBER 2005

[FIG1] Einstein as a young man. 

EINSTEIN, ALWAYS AIMING AT THE GREATEST OF
PROBLEMS, AND AIMING TO SOLVE THEM SIMPLY, 

SAW THAT NOISE COULD BE THE INSTRUMENT
TO ESTABLISH ONE OF THE GREATEST IDEAS OF ALL

TIME, THE EXISTENCE OF ATOMS.

E
T

H
-B

IB
LI

O
T

H
E

K
, Z

U
R

IC
H



IEEE SIGNAL PROCESSING MAGAZINE [23] NOVEMBER 2005

Movement of Small Particles Suspended in a Stationary Liquid
Demanded by the Molecular-Kinetic Theory of Heat.” Another
translation uses the word “required” instead of demanded.
That is, if atoms exist, then small particles immersed in liquids
must behave in a way to be described and, therefore, if the
small particles do indeed behave this way, then atoms exist.
The first sentence reads “In this paper it will be shown . . . bod-
ies of microscopically visible size suspended in liquid will per-
form movement of such magnitude that they can be easily
observed in a microscope on account of the molecular motions
of heat.” Einstein concludes the two-paragraph introduction
with “If the movement discussed here can actually be observed
. . . an exact determination of actual atomic dimensions is pos-
sible. On the other hand, if the prediction of this motion were
to be proved wrong, a weighty argument would be provided
against the molecular-kinetic theory of heat.” He concludes
the paper with “. . . the relation can be used for the determina-
tion of N; ” N was previously defined as the yet unnamed
Avogadro’s number. The last sentence of the paper reads “It is
hoped that some inquirer may succeed shortly in solving the
problem posed here, which is so important in connection with
the theory of heat.” That inquirer would be Perrin.

There is a book series, put together by Paul A. Schilpp, on
living philosophers and scientists. Each book consists of
contributed articles, and the living philosopher/scientist
gets to reply and comment. All the books in the series are
great, and the one on Einstein is particularly so. Einstein
wrote “autobiographical notes” in the beginning and a “reply
to criticism” in volume two. He starts his autobiographical
notes with “Here I sit in order to write, at the age of 67,
something like my own obituary.” He comments on his
Brownian motion work, which we just described, and ends
with “My major aim in this was to find facts which would
guarantee the existence of atoms . . .”

ANNUS MIRABILIS: THE MIRACLE YEAR/ 
THE EXTRAORDINARY YEAR
The year 1905 is called the miracle year. Einstein was 26. The
phrase Annus Mirabilis was traditionally applied to the “year”
1665/1666, when Newton revolutionized everything in such a
sustained effort that perhaps miracle is too mild a phrase.
Newton was 23. The year wasn’t a year, but about 18 months,
but one shouldn’t quibble. It was the time of the plague, and at
the end of 1665, Cambridge University closed officially and
Newton went back to his home town. In the subsequent 18
months, he revolutionized science and mathematics, inventing
mechanics, gravity, light, and calculus, among other subjects,
with ideas and methods that seemed to come out of nowhere.
Not nowhere, but out of Newton. Of course, he had been think-
ing about these things before, but at 23, he couldn’t have been
thinking about them for too long. It is no less the case with
Einstein’s miracle year, 1905, the year he was working at the
patent office. Of course, he had been thinking about these ideas
for quite a few years, but in his own words, “A storm broke
loose in my mind.”

There were three miracles. One of the three is what we now
call Brownian motion, and the aim was to prove the existence
of atoms. The second was the explanation of the photoelectric
effect, where he introduced the idea of the photon, although
the name photon was coined 21 years later (1926) by Lewis,
one of the greatest chemists of the last century. The explana-
tion of the photoelectric effect started a chain of events con-
cerning the nature of light, and it was an instrumental idea
that would develop into the new view of matter and light that
we now call quantum mechanics. The third miracle was the
special theory of relativity, which totally changed our view of
space and time and  has the consequence that energy and mass
can be transformed into each other.

The actual number of papers Einstein published in 1905 is
five. All were relatively short, simply written, with a clarity of
purpose and style that would mark all his papers. Of the three
miracles just mentioned, four of the five papers are directed to
them. They are “On a Heuristic Point of View Concerning the
Production and Transformation of Light” (photoelectric effect)
[2], “On the Movement of Small Particles Suspended in
Stationary Liquids Required by the Molecular-Kinetic Theory of
Heat” (Brownian motion) [1], “On the Electrodynamics of
Moving Bodies” (relativity) [3], and “Does the Inertia of a Body
Depend upon Its Energy Content?” [4]. The answer to the last
one is yes, and of course everyone in the world would get to
know perhaps the most famous equation in history, E = mc2,

except perhaps for F = ma. 

BROWNIAN MOTION 
Einstein did mention Brownian motion in his first paper: “It is
possible that the movements described here are identical with the
so-called Brownian motion; however the information available to
me . . . is so imprecise that I could not form a definite opinion on
this matter.” He began his second paper [5], published a year later
(1906), by expressing his regrets: “Soon after the appearance of
my paper . . .  Siedentopf informed me that he and other physi-
cists . . . Prof. Gouy . . . had been convinced by direct observation
that the so-called Brownian motion is caused by the irregular
thermal movement of the molecules of the liquid.” We stress,
though, it was Einstein who developed the statistical properties
and got specific results. In the title of the second paper, he used
the word “Brownian” in “On the Theory of Brownian Movement.”
He published a paper [6] in 1907 titled “Theoretical Observations
on the Brownian Motion,” in which he gives a review and express-
es: “I hope I may be able by the following to facilitate for physi-
cists who handle the subject experimentally the interpretation of
their observations as well as the comparison of that latter with
theory.” Further, in 1908, he published “The Elementary Theory
of the Brownian Motion” [7]. This paper begins with “Prof. R.
Lorentz has called to my attention, in a verbal communication,
that an elementary theory of the Brownian motion would be wel-
comed by a number of chemists.” Einstein then develops the
connection with diffusion in an explicit way. Incidentally, Lorentz
was the greatest physicist of his time. So, after the first paper, the
phrase “Brownian motion” became standard.



NOISE, STOCHASTIC PROCESSES AND THE
EINSTEIN (WIENER-KHINTCHINE) THEOREM
Einstein published many papers on stochastic processes for
years after his original papers on Brownian motion. While
there are many reasons for this continued interest, fundamen-
tally his interest in the nature of light, the blackbody spec-
trum, the so-called Einstein A and B coefficients,
Bose-Einstein statistics, and statistical mechanics, among
other issues, all required that he develop new methods regard-
ing noise and stochastic processes. It would take a book to put
Einstein’s contributions to noise in proper perspective, but
perhaps it is worthwhile to mention that what we now call the
Wiener-Khintchine theorem, the relation between the autocor-
relation function and the power spectrum, was originally done
by Einstein in 1914, years before Wiener or Khintchine. It was
done in two papers [8], [9] titled “A Method for the Statistical
Use of Observations of Apparently Irregular, Quasiperiodic
Process” and “Method for the Determination of Statistical
Values of Observations Regarding Quantities Subject to
Irregular Observations.” That same year, Einstein published a
number of papers on gravitation and relativity. Of course,
1914 is the year before the famous 1915 paper on general rel-
ativity. We previously mentioned how clear Einstein’s first
paragraphs always are; it is worthwhile to reproduce the first
paragraph of one of the papers just mentioned as it is so rele-
vant to his interest and contributions to signal processing:
“Suppose that one observes quasiperiodicaly fluctuating
quantity F as a function of an independent variable t for a
very large t-interval T. How can one obtain statistical data of a
perspicuous character concerning F for observation? In what
follows I present a new kind of method by which to attain this
goal.” By the way, it seems that perhaps it is Einstein who first
defined the autocorrelation function: “To this end we intro-
duce a quantity χ(�), which we call the ‘characteristic’ and
which shall be defined as follows:

χ(�) = F(t)F(t + �) = 1
T

∫ ∞

0
F(t)F(t + �)dt. (1)

This equation appears in his notation. So besides originating
the Wiener-Khinchin theorem, I think it is fair to say that
Einstein also is the one who came up with the autocorrelation
function. He added that “It will turn out that there exists a
simple dependence between the characteristic and the intensi-
ty curve;” that is, between the autocorrelation function and
the power spectrum. Einstein then concluded that (leaving out
the constant of integration)

2χ(�) =
∫ ∞

0
I(x) cos x�dx, (2)

where I(x) “shall be called the spectral intensity,” which he
derived from the Fourier series in the now usual way. Equation
(1) is what is commonly called the Wiener-Khinchin theorem. 

BROWN AND BROWNIAN MOTION
Brown did not discover Brownian motion, but he studied it seri-
ously, systematically, exhaustively, and passionately. While every-
one mentions his 1828 paper, rarely do people mention the title:
“A Brief Account of Microscopical Observations Made in the
Months of June, July, and August, 1827 on the Particles
Contained in the Pollen of Plants; and on the General Existence of
Active Molecules in Organic and Inorganic Bodies” [10]. Brief?
The article is not brief! It is written in the first person, which was
not an unusual way of writing at that time. It was common in
papers to see phrases like “I did this,” “I did that,” and “I traveled
here and there.” Of course, the word “molecule” does not mean
molecule in our sense, but it means a small thing. Brown was a
famous botanist. At an early age, he gambled and went on an offi-
cial ship expedition to Australia that lasted about two years. While
there, he collected numerous plants that no one had studied
before. After his return, he spent years studying these new plants,
and for this he earned his reputation. When he wrote the famous
Brownian motion paper, Brown was about 45 years old.

Brownian motion was discovered in the early days of the
invention of the microscope. With the invention of the micro-
scope came the discovery that a drop of pond water contains an
incredible world of microscopic life, single-celled and multi-
celled organisms of incredible varieties. Most of the organisms
moved about seemingly without rhyme or reason. In the hun-
dreds of years since its invention, the microscope has kept many
kids glued to it, mesmerizing them with an amazing world.
Anyway, it was noticed that other things like pollen also had
erratic movements, and yet they seemed very different than the
obviously live paramecium, amoebas, and such. But could these
erratic movements of pollen indicate that they are alive and
kicking; could they be the most primitive life yet? Many thought
that these erratic movements were possibly due to some primi-
tive life force. Brown saw the huge stakes in answering this
question and went all out. He started with the usual pollen and
then went through an incredible number of materials that are
obviously not alive. “Having found motion in the particles of the
pollen of all the living plants which I examined, I was led next to
inquire whether this property continued after death of the plant
. . . either dried or immersed in spirits for a few days only, the
particles of pollen . . . were found in motion equally evident with
that observed in the living plants.” Brown even studied dried
plants “no less than a century” old. He also studied minerals and
woods of all kinds, as well as anything else he could think of.
Everything demonstrated the erratic movement. After a while,
he said “To mention all the mineral substances in which I have
found these molecules, would be tedious.” It may be tedious, but
he basically did mention all of them! Thus, he concluded that
the erratic movement is not due to some life force.

THE SECOND BROWN ARTICLE
Brown actually wrote two articles concerning Brownian motion.
The second one [11], called “Additional Remarks on Active
Molecules,” is written “to explain and modify a few of its state-
ments, to adver to some of the remarks that have been made . . . .”
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Mostly he wanted to make sure that “. . . an erroneous assertion
of more than one writer, namely, that I have stated the active
molecules to be animated” does not go down in history; he cer-
tainly did not want to go down in history as someone who
thought they were alive! He also made clear that his experi-
ments aimed to show his “belief
that these motions of the parti-
cles neither arose from cur-
rents in the fluid containing
them nor depend on the intes-
tine motion which may be sup-
posed to accompany its
evaporation.” He goes on to make clear that we do not know the
cause, and he hopes future experiments will “ascertain the real
cause of the motions in question.”

WHO DISCOVERED BROWNIAN MOTION?
At the end of his second article, Brown clearly wanted to cor-
rect his lack of proper review of the literature: “I shall conclude
these supplementary remarks to my former observations, by
noticing the degree in which I consider those observations to
have been anticipated.” He went on to mention that it seems
Leeuwenhoek, the inventor of the microscope, probably saw
Brownian motion. He also named many scientists who studied
Brownian motion and gave a brief account of his predecessors’
actions. The names are Gray, Needham, Buffon, Gleichen,
Wrisbur, Muller, Drummond, Bywater, all are essentially forgot-
ten, so we might as well mention them here.

After Brown, the possible causes of this erratic move-
ment were studied. Many possibilities were suggested,
including vibrations, temperature fluctuations, light, sur-
face tension effects, and electricity. It was 1880 when
Georges Gouy, a French physicist, saw everything clearly.
He was an experimentalist and did careful experiments that
could leave no doubt that the erratic motion could not be
due to external effects. He argued that it was some inherent
property of the fluid that was causing the motion, and he
proposed reasons that were very close to the truth. In fact,
he argued that it was a direct reflection of atoms. Thus, he
clearly had the idea before Einstein, but he did not work out
the concrete results that Einstein did.

THE ATOM AND RANDOMNESS: 
A QUICK HISTORY TO 1908
Of the great scientific debates, evolution, the age of the earth, the
central position of the sun, the existence of atoms rank among the
very top not only because of the central question of their existence,
but because of the peripheral issues, among them, the frightening
thought that thermodynamics, the science dealing with the most
fundamental principles, is mere statistics. The history of the atom
starts slowly and builds into a story of the greatest magnitude until
the early part of the 20th century when it is resolved, although
nobody “saw” an atom until many years later. Atoms, historically
speaking, started structureless but turned out to be incredibly
structured objects with a beauty and depth that no one could have

imagined. That these atoms can combine to form molecules, creat-
ing substances whose properties are so dramatically different than
the original atoms; that we can combine gases to form water; poi-
sons to form salt; and that there seems to be no end to the variety
of molecules, is certainly something that no one could have

dreamed about.
The possibility that matter,

clearly perceived by our senses
as continuous, is really com-
posed of discrete objects began
to enter serious thought around
the early 18th century. The

originator was Bernoulli. But wait, what about the standard line
that Democritus, the laughing philosopher, conceived of the
idea of atoms? Take his ideas for whatever you want, but it was
not science. Democritus explained nothing with it, and it was
one idea among numerous ones that turned out to have some
semblance to reality. We forget all the other nutty ones arrived
at by pure speculation. One of Democritus’s ideas was that
atoms are indivisible. So much for speculation. Aristotle made
fun of the idea, and it was forgotten until someone thousands of
years later remembered him. In the words of Jeans [12], “Given
that a great number of thinkers are speculating as to the struc-
ture of matter, it is only in accordance with the laws of probabil-
ity that some of them should arrive fairly near the truth.”

In 1738, Bernoulli did have a scientific reason for inventing
atoms and did explain something with them. Boyle, some 70 years
earlier, had shown that air exerts pressure and that it is inversely
related to volume. So the question became: How come? How does
air exert pressure? Boyle himself came up with the explanation
that, somehow or other, particles repel each other; Newton and oth-
ers took up this idea. Newton developed the “repulsion theory” of a
gas and combined it with the then-prevailing idea that heat is a
fluid. Bernoulli, on the other hand, saw clearly that if the gas con-
sists of little balls, then pressure arose from the force with which
they hit the sides; he derived Boyle’s law using this idea. That is the
derivation we now see in elementary physics and chemistry books.
But no one took any of this too seriously; if anyone did worry about
atoms, it was with the Boyle-Newton idea, not with Bernoulli’s idea.

LAVOISIER, DALTON, AND AVOGADRO
Nothing much happens until the end of the 18th century and
the beginning of the 19th century. Lavoisier, lawyer turned
scientist, revolutionized almost all previous thought about the
nature of matter. Forget all that fluff of the past 2,500 years—
the earth, fire, air, water, view of nature—he said. Forget about
earth, fire, air, and water as the four fundamental, indivisible
elements of which everything is composed. He came up with the
role of oxygen in combustion and explained what fire really is,
and, as to the idea about the fundamental indivisibility of water,
he decomposed it! He came up with conservation of mass in
chemical reactions and numerous other ideas that are now stan-
dard and which caused a revolution in human thinking. But he
did not pay attention to the real revolution, and had his head cut
off because he once had the job of collecting taxes.

OF THE GREAT SCIENTIFIC DEBATES,
THE EXISTENCE OF ATOMS

RANK AMONG THE VERY TOP.



One of Lavoisier’s great achievements was to understand that
when substances react to form new substances, they do so in
given mass proportions. This was the start of modern chemistry
and, in particular, stoichiometry. But why should things always
react in the same way? That question is what led Dalton, in 1803,
to propose “atoms.” He understood, in rough terms, that if there
are atoms and these atoms react to form new substances that are
fixed combinations of atoms, then substances must react in given
proportions. At about the same time, Gay-Lussac came up with
studies of how things combine when the volumes of the reacting
gases are considered. Facts were catalogued but not understood.
Enter Avogadro. In 1811, he came up with the key dramatic idea
that could clarify everything. He argued that everything becomes
transparent if we just assume that, in a fixed volume, the number
of little balls of a gas is the same for all substances, no matter
what the mass, the size, or the exact nature of the substance. Take
a liter, fill it with any gas you want, and it will have the same
number of balls, Avogadro said, and if you keep that in mind, then
how and why things combine to form molecules becomes easily
understood. This was the birth of Avogadro’s number, except for
the fact that he wasn’t taken seriously, died lonely and unrecog-
nized, and nobody named his number for many years. As we will
see, noise helped restore him to his rightful place in history. This
is crucial to the story because, indeed, Einstein and more particu-
larly Perrin took it very seriously and passionately. In fact, Perrin
is the one that coined it “Avogadro’s number.”

CLAUSIUS AND TEMPERATURE
Around 1850, Clausius was revolutionizing the concept of heat,
and in particular, he was one of the leaders against the still pre-
vailing theory that heat is a fluid that flows much like any other
liquid. He is the one that formulated thermodynamics in the
way we know it today. In addition, he was one of the originators
of the kinetic interpretation of heat, that is the atomic interpre-
tation of heat. In particular, he rediscovered Bernoulli’s idea but
also came up with the further incredible idea that temperature
is a measure of the kinetic energy of each atom. So, now, we
have a microscopic understanding of what temperature really is. 

THE SMELL PROBLEM
It was about this time that very indirect methods were devised to
estimate the speed of the molecules in gases. The speeds turned
out to be spectacularly high. Well, if molecules really move so fast,
then we should smell odors almost instantaneously. But we know
that when someone starts cooking at one end of a room, it takes
time for someone across the room to smell it. If these molecules
moved so incredibly fast, why don’t we smell odors almost instan-
taneously? Yes, molecules do move very fast, but they are hindered
in their forward progress because they collide. Now, we suddenly
had collisions, and this added a totally new dimension to the reali-
ty, or unreality, depending on which side you were on, of atoms.
Also, Clausius asked for the average time that a molecule goes
before colliding with another; thus the concept of mean free path
was born. This perhaps is the first significant stochastic quantity in
history. But all this had a further air of unreality. It gets worse.

MAXWELL: THE DISTRIBUTION OF VELOCITIES
Clausius assumed that at a given temperature, the little balls are
all moving at the same speed. Maxwell, young but already very
famous, made a major contribution to the existence of atoms. In
a simple fashion, he argued and showed that the constant veloc-
ity assumption is not the case. He came up with the idea that at
a given temperature, molecules are moving with all speeds, zero
to infinity, but the fractional number at each velocity is distrib-
uted according to a Gaussian distribution. Of course, we now
call that the Maxwell or Maxwell-Boltzmann distribution. Then
Clausius argued that temperature is proportional to the average
kinetic energy, which is the variance of the distribution. Now,
temperature is stochastic! This was in 1860.

THREE REMARKABLE BOLTZMANN QUESTIONS
Boltzmann then became the leading atomist and also the focus
of the anti-atomists. First, he asked: Why should the Maxwellian
distribution be the distribution? Second, he asked: Suppose we
have internal and external forces, then what should the distribu-
tion be? But the most profound question was: Since we can start
a gas with any distribution of velocities, who can stop us after
all, then how and why does it evolve to a Maxwellian?

THE BOLTZMANN EQUATION—
THE BIRTH OF STOCHASTIC PROCESSES
Look at it another way. These atoms are going all over the place,
moving like crazy in all kinds of ways with all different speeds.
So how is it possible that these fantastically erratic movements
evolve to a Maxwellian and stay Maxwellian? These questions
and answers make Boltzmann one of the greatest scientists of all
time. He realized that collisions are at the root of it and derived
what is now one of the most famous equations of science, the
Boltzmann equation. As to the approach to steady state or equi-
librium, Boltzmann showed that his equation evolves to a
Maxwellian. For those who do not know this equation, it must
be stressed that it is one of the most important equations in
physics, astronomy, chemistry, and plasma physics, and we
could go on and on. It is an equation of evolution for the proba-
bility density of position and velocity, f(r, v, t),

∂f
∂ t

+ v · ∇r f + F · ∇v f =
(

δf
δt

)
coll

, (3)

where F is the external force. The right-hand side is the so-
called collision term. It is the change in the distribution due to
collisions. Boltzmann wrote it explicitly for a dilute gas, and it is
standard now for that case. For other cases, there are different
types of collision terms. Because of this term, the process is irre-
versible and indeed goes to Maxwellian; hence, the terminology
Maxwell-Boltzmann distribution. It was Boltzmann who first
fully understood the concepts of stochastic processes, particu-
larly the idea of an evolving probability distribution. In his clas-
sic book Lectures on Gas Theory, one can find many of the ideas
of stochastic processes as we now know them. This equation
should be seen as the start of “stochastic processes” as a field.
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ENTROPY: CLAUSIUS AGAIN AND BOLTZMANN AGAIN
Clausius enters again with a totally new idea—entropy.
Thermodynamics had become a fundamental science, perhaps the
most fundamental of all sciences, with laws that are so general
and so powerful no one could doubt their absolute validity. It per-
meated all fields and was the foundation of the industrial revolu-
tion. The first law, the conservation of energy in its most general
form and the equivalence of different forms of energy, was formu-
lated by Helmholtz around 1850. Carnot came up with a means to
study and formulate a cyclical thermodynamic process. However,
there was clearly something missing from thermodynamics:
sometimes things return to how they were, but most often they
do not. Entropy, as a thermodynamic quantity, was thus invented
by Clausius to formulate “irreversibility.” The definition he gave
was strictly thermodynamic, and it was soon established as a fun-
damental part of thermodynamics. Entropy never decreases in a
closed system, it either remains the same or increases, and that is
a measure of irreversibility. This was around 1865.

Of course, Boltzmann then asked: What is entropy?—from
my point of view, my point of view being that I and a few others
really know that the world consists of little things called atoms.
What is entropy from that point of view? Boltzmann came up
with the epitaph to his tombstone

S = k log W, (4)

where k is the Boltzmann constant and W is the number of states
accessible. This was around 1872. The atomic idea started to get seri-
ous as an idea, but even as an idea it was very disturbing since it was
hard to swallow that bedrock thermodynamics was merely statistics.
Many just smiled at the idiocy of the thought. Also, let’s not forget
that nobody ever dreamed of seeing atoms or of having a concrete
experience of their existence. No one could demonstrate a real mani-
festation of atoms that would turn the tide against the nonbelievers.
And, in fact, there were simple and powerful arguments against
atoms. However, we point out that the idea of atoms was more
accepted by chemists, one of the reasons being that Dalton
explained multiple proportions with  the concept. 

THE GREAT DEBATE
The existence of atoms became intertwined with Boltzmann and
entropy. It makes sense that it should be so, and the arguments
went something like this: If you take atoms seriously, derive
equations, make thermodynamics mere statistics, and define
entropy in terms of movement of unseen atoms, well then, if we
find a fundamental flaw, then not only are all your mathematics
and ideas wrong, but perhaps it will put an end to the whole silly
atom idea. The first argument against Boltzmann was made by
his friend Loschmidt, who actually believed in atoms, but was
not shy in bringing up important counter arguments.

REVERSIBILITY ARGUMENT
Loschmidt’s reversibility argument is simple and powerful.
Newton’s equations are time reversible. What that means is that if
you solve them and get the positions and velocities of the particles

at a future time, then, if you reverse their velocities, the particles
will trace back to where they started. Therefore, if we have a sys-
tem that evolves, and entropy is a function of the particle coordi-
nates, we can easily create a system (by reversing the velocities)
that obviously has decreasing entropy, since the system goes back
step by step to where it came from. So entropy doesn’t always
increase, yet we know it always does according to thermodynam-
ics, so there you have it! This argument was simple and powerful
and, moreover, it was put forward by a friend! Boltzmann had no
simple convincing answer. This became a centerpiece of the antis-
tatistical interpretation of the nature of matter. Boltzmann once
said of this argument: Try it. Boltzmann knew it was not a good
rebuttal. This was around 1875. Also, we point out that Loschmidt
made many contributions to the atomic view and indeed was one
of the early workers measuring atomic properties.

THE RECURRENCE ARGUMENT
Poincaré was a reigning figure—an astronomer, physicist, mathe-
matician, and philosopher of science. He proved a remarkable the-
orem. For certain systems of particles, as they evolve, the system
will eventually come back to almost the same initial conditions.
This is a remarkable theorem in classical mechanics and crucial to
the understanding of the evolution of N particle systems. Zermelo,
Poincarés’s student, who was to become Boltzmann’s enemy,
argued: if you wait around, then any system will come back more
or less to where it was and, hence, entropy as defined by
Boltzmann will come back to more or less what it was. Therefore,
entropy doesn’t always increase according to the Boltzmann idea.
Boltzmann shot back saying well, yes, but it would take a very long
time, but, Zermelo answered, that’s not the point! Does entropy
never decrease, as thermodynamics says? Or does it indeed
decrease according to you? Yes or no, don’t hedge, he argued.
Boltzmann had many replies, but not good ones for his time. We
also mention that indeed it was Poincaré, in 1890, who really first
made the argument, but it was Zermelo who pursued it.

BOLTZMANN
Boltzmann was a grand man in every way—in size, personality,
appetite, travel, excitement, charm and, of course, accomplish-
ments. Also, he suffered from depression, got mad as hell at times,
attempted suicide, and succeeded. But, basically, he was a nice guy
who felt he was revolutionizing science and did not understand
why some were opposing him so viciously. Many, of course, were
on his side, and some of them were the greatest scientists. Years
later, Lisa Meitner, the discoverer of nuclear fission, would remem-
ber Boltzmann’s lectures as “the most beautiful and stimulating
that I have ever heard . . . He himself was so enthusiastic about
everything he taught us that one left every lecture with the feeling
that a completely new and wonderful world had been revealed.”

THE HEAVYWEIGHT ANTI-ATOMISTS: 
OSTWALD AND MACH
There were two super heavyweights leading the anti-atomist
view, Ostwald and Mach, and they were heavyweights of major
proportions. Ostwald was considered the greatest chemist of his



time. He made many contributions to all aspects of chemistry,
particularly electrochemistry, and is generally credited for start-
ing the field of physical chemistry. In addition, he was very
influential in the sense that he started many major journals and
had many great students who were also influential, a number of
them Nobel Prize winners. So there you have it, the inventor of
physical chemistry did not
believe in atoms and was not
exactly shy in expressing his
views very strongly. Ostwald
had an agenda for opposing
atoms. He, like everyone else,
realized that the fundamental
nature of matter was the greatest problem of all time. He had
his own theory, called energetics, and it didn’t involve atoms at
all. We point out, though, that Ostwald and Boltzmann were
friends, more or less.

Mach, one of the great physicists, who was the inspirer of
Einstein on many issues but particularly on what has come to
be known as Mach’s principle, argued: you can’t see them and
you don’t need them. It’s the super positivist view of nature.
Mach also was not exactly shy and the debates raged on bitterly.
To make the drama even more interesting, Ostwald and Mach
did not really get along because Ostwald, seeing a great potential
ally, wanted Mach to be for his energetics approach; Mach
wouldn’t bite, and thus Ostwald wasn’t exactly happy.

Everybody got involved in the atomic debate—poets,
philosophers, everybody. There were also many great scientists,
like Planck, who opposed atoms and then changed their minds.
Of course, anything so fundamental as dealing with “reality” had
to attract everyone. I know of no better way to portray the flavor
and intensity of the debate than to give some quotes from vari-
ous time periods:

“I don’t believe that atoms exist!”—Mach
“If I were the master, I would outlaw the word ‘atom’
from science . . . ” —Dumas

“We shall never get people whose time is money to take
much interest in atoms”—Samuel Butler

“I accept neither Avogadro’s law, nor atoms, nor
molecules”—Berthelot

“Every time someone has tried to imagine or depict
atoms . . . in short a sterile conjecture”—Deville

“Atomism is a doctrine that has miserably failed . . . ”
—Ostwald

“ . . . atoms . . . absolutely contradict the attributes hith-
erto observed in bodies”—Mach

POLITICALLY CORRECT ATOMS:
READ THE BOOKS BACKWARDS
The debate had a long-range effect, and the nonbelievers made
it more than just a great scientific debate. In his book [13],
Pullman describes the effect of the governmental decrees in
France not to teach atoms, which was due mostly to the politi-
cal influence of Berthelot. As we can see from the quote above,

Berthelot didn’t like Avagadros’s number, atoms, nor mole-
cules, and he did something about it. To further quote
Pullman, “Bertholet’s actions had a disastrous consequence on
the teaching of chemistry, on research, and even on industrial
development.” He also quotes the chemist Bachelard, who
experienced it himself: “Most textbooks complied with peculiar

government decrees by men-
tioning the atomic hypothesis
as an afterthought at the very
end of the chapter devoted to
chemical laws. Worse, some
relegated it to an appendix to
emphasize that chemistry had

to be thought in an untainted positivist form . . . . the trick was
never to utter the word ‘atom’ . . . Alas, . . . these ‘politically
correct’ books would have made more sense had it been per-
missible to read them backwards.”

WHAT BECAME OF OSTWALD AND MACH?
After Einstein and Perrin, Ostwald, in 1908, changed his mind,
and he was big about it. He received the Nobel Prize in 1909 and
remained active until his death in 1932. He is remembered as
one of the greatest scientists ever. The Nobel Prize was “in
recognition of his work on catalysis and for his investigations
into the fundamental principles governing chemical equilibria
and rates of reaction.” His Nobel lecture is a beautifully written
history of many parts of chemistry and physics. It is, of course,
ironic that everything he discussed, almost all of physical chem-
istry, is now explained in terms of atoms! Mach, on the other
hand, never relented. He wrote a famous book on mechanics
called the Science of Mechanics, which went through many edi-
tions. I recently read all the introductions to the various edi-
tions. No mention of atoms there, but he does mention them at
the end of the book.

EINSTEIN: WHAT DID HE DO?
Remember, Einstein’s aim was to find a measurable experi-
mental manifestation of atoms, to predict a macroscopic
observable fact. In a few pages, he introduced fundamental
stochastic arguments that are common today. He derived the
probability distribution for the small particle, obtained the
spread to be proportional to the square root of time, and also
described how one can measure Avogadro’s number from a
stochastic quantity!

For the rest of this section, we use Einstein’s notation. He
first derived the governing equation for the probability of the
Brownian particles, f(x, t), to be at position x at time t

∂ f
∂ t

= D
∂2 f
∂ x2 (5)

and pointed out that, of course, “this is the well-known equation
for diffusion . . . D is the coefficient of diffusion.” He solved it for
the impulse response (delta function of position at time zero,
normalized to n, the number of small particles) and gave
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f(x, t) = n√
4πD

e− x2
4Dt√
t

. (6)

Einstein then explicitly wrote the standard deviation

λx =
√

x2 =
√

2Dt. (7)

The formula is pretty clear, but he emphasized what will
become the most famous fact of Brownian motion: “The mean
displacement is therefore proportional to the square root of
time.” However, the truly great result is that Einstein had, a
few paragraphs earlier, derived the diffusion coefficient in
terms of the fundamental constants

D = RT
N

1
6πkP

, (8)

where R is the usual gas constant, T is the temperature, k is the
viscosity, and P is the radius of the small particle. (Note that I
have kept totally to Einstein’s notation. It is important to
emphasize that k is now universally used for Boltzmann’s con-
stant, but in Einstein’s 1905 paper he uses it for the viscosity.)

Here is the main point: combining (7) and (8), we obtain

λx =
√

t

√
RT
N

1
3πkP

, (9)

all terms being measurable or known approximately. So either
this equation is true or not, and Einstein stated the conse-
quences of the equation’s validity in his introduction. To make
the point that one can actually measure λx, he took room tem-
perature and got what λx would be per minute, and then arrived
at an easily measurable number. As if that were not enough,
Einstein then reversed the argument. Solve (9) for N (for time
equal to one second, say)

N = 1

λ2
x

RT
3πkP

(10)

and hence N can be measured this way. Let us not forget that N
is Avogadro’s number and hence fluctuations, noise, can be used
to measure a deterministic number, one of the most important
numbers in science. 

THE KEY IDEAS
Besides the ideas mentioned, it is important to appreciate the
following fact. Einstein saw that the heavy particle is just a big
atom pushed around by the real atoms, and according to energy
equipartition, the statistical properties of the big particle are
the same as the real invisible atoms. More precisely, the mean
kinetic energy of the pollen is the same as the mean kinetic ener-
gy of the atoms. Therefore, we can use the heavy particle as a
probe of the ones we cannot see. Think of this analogy: an ele-

phant is on ice and gets hit statistically by mosquitoes, but
because of equipartition some of the statistical properties of the
elephant are the same as that of mosquitoes. Hence, if we meas-
ure the statistical properties of the elephant, we will know the
statistical properties of the mosquitoes. But, more importantly,
we can conclude that mosquitoes exist by the erratic movement
of the elephant. (See also “The Mathematics of Noise.”)

Many books and articles imply that Einstein did the free par-
ticle case subjected to a random force and Langevin did the
case with friction. That is not correct at all. Einstein did do it
with friction, but he did it separately, and, in fact, that is how
he related D to the other physical quantities mentioned above.
Also, we point out that the cause of the fluctuations, the atoms,
are also the cause of the friction because once the particle
moves, it gets hit more from one side than the other and hence
gets slowed down. This is why there is a fluctuation-dissipation
theorem that relates the fluctuations to the dissipation.

WHY WAS EINSTEIN PREPARED TO DO IT?
Einstein was totally involved with atoms, their physics, and
chemistry. It was one of his main interests, and his thesis and a
number of papers dealt with estimating the mass of atoms. So he
lived with the practical issues of atoms on a daily basis. Don’t
think of the Einstein of the newspapers and of unified field theo-
ry, but of Einstein as a down-to-earth practical chemist and
physicist. To impress this upon the reader, in one of his papers on
Brownian motion, for example, one finds “Diisoamyl-ammoni-
um, C10H24N.” I don’t know what that is, but it’s part of a practi-
cal numerical discussion he gives on measuring diffusion and
viscosity. Hence, he did not just wake up one morning and come
up with the idea of proving the existence of atoms. And, most
importantly and contrary to what is often implied in many books
on stochastic processes, he was not after explaining Brownian
motion. He predicted Brownian motion as an observable phe-
nomenon with the aim of proving the existence of atoms.

LANGEVIN, THE EQUATION, PICASSO,
AND STOCHASTIC DIFFERENTIAL EQUATIONS
Paul Langevin was a physicist who made many important basic
discoveries in a number of fields, particularly on the magnetic
properties of materials. He was extremely productive and
famous in his lifetime, and he is now considered one of the great
physicists of the last century. In his later years, Langevin worked
on sonar, the associated electronics, and many other things. His
four-page paper is usually taken as the birth of stochastic differ-
ential equations [14].

Langevin was a student of Pierre Curie. Langevin and Marie
Curie caused a major scandal that was not his fault or Marie’s,
but that of France! Langevin and Curie had a love affair about
five years after Pierre Curie died, but Langevin was married and
his wife wasn’t exactly thrilled. It made the newspapers big time,
and a scandal ensued. At times, the public protests almost turned
violent. The reason behind the scandal and the mobs was that a
foreigner was corrupting a French scientist! After all, Marie was
born in Poland! The cries were to run her out of town, that is,



out of France! Langevin stuck by her in every way and even had a
duel with a reporter. Of course! At one point, there was a mob in
front of her house, and the great mathematician Borel, who at
that time was an administrator at the Ecole Normale Supérieure,
took her and her two daughters into his house for safety. He was
immediately threatened by a prominent minister to give her up
to the mobs. To his honor, he resisted. All this happened after she
had won one Nobel Prize and during the time it was announced
she would receive another. In fact, the Nobel committee told her
to stay home, they couldn’t take the heat, they said. But Marie
wanted to see Sweden again and went there anyway. Today,
France loves everybody; Paul and Marie are national heroes. They
are on stamps, and streets are named after them. By the way,
only a little while before this scandal, Marie was involved in
another one; she had the nerve to run for membership in the
French Academy of Sciences. She lost. What nerve! A woman!
With only one Nobel Prize! And a Pole, no less. She was even
accused of being Jewish! She wasn’t. Incidentally, we mention for
the sake of believers in cosmic love that many years later,
Langevin’s grandson married Marie’s granddaughter.

LANGEVIN AND PICASSO
Picasso sketched Langevin. Why would he do that? It’s one of
the few, perhaps only, triumphs of communism. In Picasso’s
own words: “While I wait for the time when Spain can take me
back again, the French Communist Party is a fatherland to me.
In it I find again all my friends—the great scientist, Paul
Langevin.” This was in 1945.

WHAT IS THE LANGEVIN EQUATION
AND WHAT DID HE REALLY DO?
The main aim of Langevin’s classical 1908 paper, which is now
taken as the birth of stochastic differential equations, was to
derive Einstein’s result in a more physically transparent way
that also simplifies the mathematics. This view regarding sim-
plification of the mathematics is not quite correct, as we will
shortly discuss. The title of the paper is “On the Theory of
Brownian Motion.” It is a very short article, four pages. The aim
was to derive the Einstein equation (9), that is, to obtain an
explicit expression for x2, from which the standard deviation
follows (�x2 in Langevin’s notation, λx in Einstein’s). It is
interesting that he gives full credit to Gouy for the basic idea
that Brownian motion is a “manifestation of molecular ther-
mal agitation.” However, he immediately says that “quantita-
tive verification . . . has been rendered possible by A.
Einstein.” He also very appropriately gives credit to
Smoluchowski: “has tackled the problem . . . he has obtained
for �x2 an expression of the same form [as Einstein, (7)
here] but differing by the factor 64/27.”

Langevin’s approach was to use Newton’s equation, which is
direct if you know the forces. It was known that for a ball going
through a fluid, there is a friction force proportional to the
velocity, which of course also depends on the size of the ball and
on the viscosity. This force is called Stokes law, and it appears in
every elementary physics textbook then and now. It is given by

6πµaξ , where ξ (using his notation) is the velocity, a is the
radius, and µ the viscosity. Langevin argued that, in addition to
friction, there is another force because “in reality . . .” the
Stokes force “is only an average, and because of the irregularity
of the collisions of the surrounding molecules . . .” The total
force is, hence, the friction force plus X, the irregular force.
Writing ma = f, we have

m
d 2 x
dt2 = −6πµa

dx
dt

+ X, (11)

where “X is indifferently positive and negative.” Of course, X is
what we now call the random force. This was the first time in
history that Newton’s equation was used with a random force.
The negative sign in front of the friction force is because it
always opposes the motion. 

The whole aim is to get x2, and so Langevin had to get x2 in
(11), which he did by simply multiplying by x to get

m
2

d 2 x2

dt2 − m
(

dx
dt

)2

= −3πµa
dx 2

dt
+ xX. (12)

(We have changed his notation slightly by using dx/dt instead
of ξ , which indeed he does himself subsequently). He then took
the average of both sides and said that the average of xX is “evi-
dently null by reason of the irregularity of . . . X” to get

m
2

d 2 x 2

dt2 − m
(

dx
dt

)2

= −3πµa
dx 2

dt
. (13)

To eliminate 
(
dx/dt

)2 he used

m
(

dx
dt

)2

= RT
N

, (14)

which relates it to the macroscopic temperature, T. This substitu-
tion is crucial and, of course, was also used by Einstein. The reason
we can equate the two is because of equipartition of energy, which
stems from the fundamental idea that the pollen grain is just act-
ing like an atom but with different mass (see below). In (14), N is
“the number of molecules in one gram-molecule, a number well
known today and around . . . ” That is, the yet unnamed Avogadro’s
number for which Perrin would get the Nobel Prize years later. So
here Langevin used an estimated value, while Einstein used the
reverse argument, and said we can measure N.

The solution of (13) is

dx2

dt
= RT

N
1

3πµa
+ Ce− 6πµa

m t (15)

and he argues that, for the standard values of the parameters,
the second term is very small and hence
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dx 2

dt
= RT

N
1

3πµa
(16)

or

�x2 = RT
N

1
3πµa

τ, (17)

which is identical to Einstein’s result, (9). (Note here the viscos-
ity is µ, but in Einstein’s paper it is k).

We now crystallize why Langevin’s contribution is so
important. Most prominent is the idea that we apply Newton’s
equation directly as if it was a deterministic problem and then
worry about the stochastic issues after simplification or after
writing the solution for the deterministic equation. This will
become the standard method used for stochastic differential
equations. (See “The Mathematics of Noise.”) To introduce the
stochastic part, Langevin ensemble averages, which brings in
the stochastic properties of the random force. 

WHY IS THIS SIMPLER THAN THE EINSTEIN PROCEDURE?
Langevin’s approach is simpler because it is easier to write
Newton’s equations once one knows the forces. However, the
Langevin procedure doesn’t get you as much, but it does give you
the important quantities directly and easily. The Einstein proce-
dure gives you the whole distribution while the Langevin proce-
dure gives only the first and second moment. The Langevin
method avoids writing an equation for the distribution of x. Of
course, it is often very important to get the probability distribu-
tion; the methods to do so are now called Fokker-Planck equa-
tions or Master equations. Hence, if one just wants a few
low-order quantities like the mean and standard deviation as a
function of time, then the Langevin approach is indeed much eas-
ier. If one wants the distribution of x, then it is not. Of course, one
can in principle calculate all the moments from the stochastic dif-
ferential equation and then write the distribution, but that is gen-
erally not feasible except for simple cases. For further discussion
on this point see the section titled “The Mathematics of Noise.”

WHAT IS EQUIPARTITION OF ENERGY?
This concept of equipartition of energy is crucial to discussions
of noise, and perhaps this is a good place to explain it. Think of a
big box containing a lot of elephants, a lot of mosquitoes, and a
lot of molecules, all of them colliding with each other. Forget
about gravity. Equipartition of energy is a remarkable result that
shows that, in equilibrium, the mean kinetic energy of each
species is the same! That is

1
2

m
〈
v 2

〉
(of elephants) = 1

2
m

〈
v 2

〉
(of mosquitos)

= 1
2

m
〈
v 2

〉
(of molecules). (18)

We can see elephants, but we can’t see molecules. And, if we are
far away, we can’t see the mosquitoes. But the motion of the

elephants gives us a window to the mosquitoes and molecules.
Now 〈v2〉 of the elephant is very small because its mass is very
big, but if we could see and measure it then we can tell that
there are small things affecting it (in this case mosquitoes and
molecules). This is the main reason why we can use Brownian
particles to prove the existence of molecules. The Brownian
particles are the elephants. Furthermore, the kinetic energy is
proportional to temperature and hence the “temperature” of
the elephants and molecules and mosquitoes are the same

Telephants = Tmosquito = Tmolecules. (19)

In particular for three-dimensional motion

1
2

m〈v 2〉 = 3
2

kT = 3
2

R
N

T, (20)

where k is Boltzmann’s constant and equal to R/N. Therefore,
one can relate the microscopic quantity m〈v2〉 to the macro-
scopic temperature, T. Everybody has the same temperature
and, hence, everybody has the same mass-velocity combination
given by 1/2m〈v2〉.

PERRIN
It is often written that Perrin verified Einstein, hence establish-
ing that atoms exist, got the Nobel Prize, and the rest is history.
That is not quite correct. Perrin was devoted to atoms and to the
measurement of Avogadro’s number prior to Einstein’s paper. As
previously mentioned, he was the one who coined “Avogadro’s
number.” We mention again that Avogadro had no idea of the
magnitude of his number but saw clearly that if reactions take
place the way they do, then the number of atoms in a given gas
volume must be the same, independent of the substance. A pre-
posterous idea on the face of it, but true. Perrin actually consid-
ered many ways of measuring Avogadro’s number. Of course,
Einstein’s 1905 article motivated him even more and, in addi-
tion, things were really heating up in the atomist debate. One of
the ways Perrin considered was based on Einstein’s formula. In
fact, Perrin used a suspension, and in that case one must take
into account the external force of gravity. This was done not by
Einstein but by Smoluchowski.

Perrin published a very beautiful and influential book in
1913 called The Atoms [15]. It is a short but sweeping book that
discusses many topics, including the theory of density fluctua-
tions. In the book and in other places, Perrin discussed many
different ways of measuring Avogadro’s number and argued that
since these different ways give roughly the same results, there
must be a reality to all of this! He got the Nobel Prize in 1926,
and his Nobel lecture makes fascinating reading. Even though it
was written in 1926, after everyone had accepted the idea of
atoms, he never lets the reader forget the central issue. He starts
with: “Since I have the great honour to have to summarize here
the work which has enabled me to receive the high international
distinction awarded by the Swedish Academy of Sciences, I shall



speak of the ‘discontinuous structure of matter’ . . . .” He then
gives a beautifully written historical blow-by-blow account of
atoms. He goes into detail, but every few paragraphs he reminds
the reader about the main issue. At one point Perrin says:
“Indeed, increasingly numerous and strong reasons have come
to support a growing probability, and it can finally be said the
certainty, in favor of the hypothesis of the atomists.”

AVOGADRO’S NUMBER AND COUNTING ATOMS
In the words of Poincaré (about 1910): “the atomic hypothesis
has recently acquired enough credence to cease being a mere
hypothesis. Atoms are no longer just a useful fiction; we can
rightfully claim to see them, since we can actually count them.”
Perrin counted them.

BACHELIER, THE STOCK MARKET, 
AND FINANCIAL ENGINEERING
The field of mathematical finance, sometimes called financial
engineering, considers Bachelier as its father. That is quite prop-
er and justified. Moreover, it can be said that Bachelier should
be recognized as one of the originators of stochastic processes.
Anyone who is not familiar with current mathematical econom-
ics would be shocked to know the depth of the study of stochas-
tic processes.

While Bachelier’s famous thesis addresses the issue of stock
prices, it must be emphasized that his lifelong interest was in
probability and stochastic processes. His approach in the thesis
was as a scientist, and he wanted to see how stock prices
behaved in time from a probabilistic point of view. (Actually, he
was studying option prices, which have always been the most
interesting time series because they have a finite life time,
among other reasons.)

Bachelier took courses given by Poincaré who, as previously
mentioned, was one of the greatest mathematicians, physicists,
astronomers, and philosophers of science. In astronomy,
Poincaré is a legend because of his work on dynamics. Of
course, he is the discoverer of the sensitivity of initial conditions
in dynamics, a crucial part of what we call chaos theory today.

Bachelier’s thesis [16], “Theory of Speculation,” was complet-
ed in 1900. In the thesis, he developed many mathematical ideas,
that are now part of stochastic processes. Of course, the fluctua-
tion of stock prices was an unusual thing to take up. Poincaré’s
summary of the thesis defense clearly shows that everyone was
aware of the unusual topic, but it is also clear that everyone was
impressed with the results, particularly the mathematics. His
thesis committee was as impressive as any in history. Besides
Poincaré, there was the physicist Boussinesq, who was a major
contributor to almost all branches of physics but particularly
hydrodynamics and turbulence. There was Appell, one of the
great mathematicians of his time. I emphasize this for a reason
that will be clear shortly. The thesis report written by the com-
mittee emphasizes the main mathematical results and is very
positive. “The manner in which M. Bachelier deduces Gauss’s law
is very original and all the more interesting in that his reasoning
can be extended with a few changes to the theory of errors.”

Of the many significant results Bachelier came up with is the
idea of the transitive property of a probability distribution,

Pz,t1+t2 =
∫ ∞

−∞
Px,t1 Pz−x,t2dx, (21)

and shows that the solution is given by (6), derived by Einstein
five years later. 

We now describe what has become a famous story in
regard to Bachelier’s life. He had difficulties as a young per-
son for a variety of reasons, including the loss of his father at
a young age and the need for him to help out in the family
business. However, he clearly did fine given that he was
involved with Poincaré; that speaks miles. Bachelier was fully
aware that his contributions were important and sometimes
considered himself, perhaps arrogantly, as a major figure. He
published quite a few papers and books on probability and
had a number of positions, but most of these were temporary
and minor. In 1926, he applied to the University in Dijon for
a chair position. Bachelier was by now 56 years old. As was
common at that time, a formal report had to be written, and
it was assigned to M. Gevrey, a mathematician at Dijon who
knew nothing about probability theory. He consulted Paul
Lévy, who was and is considered a major mathematician and
who made important contributions in the field of probability.
Together, Gevrey and Lévy wrote a killer report because they
said they found a major mistake! A killer mistake. No job for
Bachelier and, moreover, this ruined his reputation.
Bachelier got mad, really mad. And rightfully so. He said
“The critique of Lévy is simply ridiculous.” Bachelier
explained why it was ridiculous and accused Lévy of, let us
say, not being particularly honorable. Of course, this was to
no avail, and Bachelier suffered the rest of his life. Much has
been written about this affair, and the general view is that
Lévy was honest in his assessment, although very mistaken
in having found a “mistake.” Also, the story goes that many
years later, they made up and everybody kissed each other.
The affair and ending do not smell right. How is it possible
that someone like Lévy would think he found a mistake
knowing full well that Bachelier was not exactly an amateur
and was a student of the great Poincaré? How is it possible
that if he really did think he found a mistake, he wouldn’t
first check himself out with others before using this mistake
to thrust the sword? How is it possible that someone of Lévy’s
stature and accomplishments could be so cavalier, so irre-
sponsible, and so silly? I have seen more letters of recom-
mendation for tenure and promotion and referee reports
than I have hair, and I am not bald. It has always shocked me
what people are willing to say so cavalierly in a report often
written in a few minutes and with the full knowledge that it
may ruin people. I have been fascinated by this, and I believe
that the source of this “courage” is self aggrandizement,
cheap machismo, fear, and a few other similar things. I have
read enough killer reports to suspect that, for some, looking
in the mirror in the morning is a ritual: Mirror mirror on the
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wall, who is the best scientist of them all? and miraculously
the mirror reveals the answer and instructs them to prove to
the world that they are great, and what better way to do that
than to dash off a killer report?

Bachelier was truly great, and it is very sad that he wasn’t
given his full due during his lifetime. As time passes, he will
overshadow by far the poor treatment he got and will be remem-
bered as one of the originators of stochastic precesses.

ECONOMICS
Many economists convey the notion that Bachelier was “discov-
ered” by American economists after a life of obscurity. There is
a PBS program that implies this romantic notion. This view is
not correct and probably is just a case of PBS gone Hollywood.
Bachelier was pretty well
known by the greats of his
time, such as Kolmogorov. It
is also clear that Feller knew
of Bachelier and thought
highly of his contribution.
Indeed, on page 181 of his classic volume 2, Feller equates
“Brownian motion” and the “Wiener-Bachelier process.”
Economists should say that they became aware of Bachelier at a
late date. It is proper to call him the originator of financial
engineering or mathematical finance because, indeed, he was
the first person to study econometric series in a serious man-
ner. Incidentally, while we should be historically pleased that
Feller mentioned Bachelier, it is curious he brought in Wiener
but not Einstein, Smoluchowski, and Langevin.

THE VACUUM TUBE, NOISE, 
AND ELECTRICAL ENGINEERING
The vacuum tube changed the world. It was the device that initi-
ated the study of noise in electrical engineering, and it is electri-
cal engineering that has carried noise to the very highest levels
in both theory and practice. 

The 20th century was the electricity century. It brought the
understanding of electricity and the beginning of its use in every
way. For the man on the street, electricity went from being a par-
lor thrill for the rich to the main technology of everyday life. (It’s
fun to get shocked after all. When I was a teenager I used to fix
radios, which was a common thing to do at that time. I decided to
do it seriously and took an evening course for learning the trade.
It was a “man” thing. One proved one’s manhood by getting
shocked straight from the wall. Some of us would cheat by using
fingers on the same hand, but the real men would take it using
two hands so that the shock would be felt through the chest.) The
understanding of electricity and magnetism was seen as the great-
est challenge since Newton, perhaps the greatest intellectual chal-
lenge of all time. Maxwell did it with what we now call Maxwell’s
equations, one the highest intellectual achievements of all time.
Maxwell decided to use quaternions to express his equations, an
unwise idea. Heaviside, using the new methods of Gibbs, namely
vector analysis, re-expressed Maxwell’s equations in a much sim-
pler form, and that is how we know them today.

The electrical engineers of that time did not want to hear
about Maxwell’s equations. On one of the biggest projects of all
time (in terms of normalized money), the building of the
transatlantic cable, the engineers refused to take the new elec-
tromagnetism into account, resulting in many disasters that
were solved by the Maxwellians. “Maxwellians” is a term used by
Bruce Hunt in one of the best books ever written about science
called The Maxwellians. Maxwell died early, and a group arose
that pushed for Maxwell’s equations in an extraordinary way.
Among them were Heaviside, Hertz, Pointing, FitzGerald,
Larmor, and Lodge. Using Maxwells’ equations, they solved
problem after problem that others could not.

Hertz, of course, achieved the most remarkable of successes.
Standing on one side of a room, he produced a spark. On the

other side, he had a “receiver”
that consisted of a wire bent
into a circle with a small gap.
When he produced a spark on
one side, he got a spark in the
receiver, thus verifying

Maxwell’s prediction that there must be electromagnetic waves.
Also, Maxwell’s equations have a very strange property, in that
they are not invariant to what Newton said all laws should be
invariant to: observers moving with constant velocity. This prop-
erty would lead Lorentz, Fitzgerald, and Einstein to change our
view of the universe. In addition, it was Maxwell that produced
the startling idea that ordinary light is an electromagnetic wave.
Who could have guessed that the picking up of bits of paper by
rubbing something on one’s hair and the picking up of iron fill-
ing by some rocks would be connected to light?!

The technological uses of electricity came at a furious pace.
Edison invented the stock ticker and didn’t stop! The electric
light bulb changed the world, as did most of Edison’s subse-
quent inventions. It was Edison who discovered that, when a
metal is heated, it gives off “electricity.” That is, take the ordi-
nary light bulb with a very hot filament and put a positively
charged piece of metal in it, the plate, and current will flow in
the light bulb from the hot filament to the plate, even though
there is no physical connection between them. 

Electricity in 1900 was the future technology and was seen
to be as big as the mechanical technology of the previous 100
years. The inventions came out of necessity. The electric light
bulb required the invention of generators. Edison invented
them, as did Tesla, who made a deal with Westinghouse.
Edison’s was dc and Westinghouse’s was ac; the ac version was
clearly better. New York was the first big city to be electrified,
and the cost involved was astronomical. Financial fights of all
kinds broke out. As for the generator fight, the issue became: Do
we choose the ac of Westinghouse or the dc of Edison? The elec-
tric chair was invented, and Sing Sing prison wanted to acquire
both an electric chair and a generator. Of course, no one wanted
their generator to be associated with death. The prison bought
an ac generator and used it for the first electrocution. The dc
guys then said, see what ac can do to you? It can kill you! (So for
this and a few other reasons, I could not have a television in the

NOISE HAD A GLORIOUS BIRTH.



1950s because I lived in a building that had dc, as was the case
in many New York buildings. But the force of TV was over-
whelming, and buildings were converted swiftly. But even in the
1960s, many universities still had dc and students would buy dc-
to-ac converters to watch their favorite cultural programs. The
inventor of television, Vladimir Zworykin, said “I would never let
my own children watch it.”)

Of course there was Marconi and wireless, the telephone, and
the transatlantic cable, among many other inventions that were
only in their infancy. Then came the vacuum tube, which
changed the world in almost every way, technologically and
sociologically. It made worldwide communication possible, and
it made the radio possible! If one were to go to the site of the
World Trade Center before it was built, one would see numerous
stores selling what seemed to be an infinite variety of vacuum
tubes, some neatly shelved, others in barrels, priced anywhere
from two to five cents. Corner drug stores had self-service
machines to test vacuum tubes. It was a ritual when a radio mal-
functioned to take out all the tubes and spend a half hour test-
ing them to find the bad one. The names of the common tubes
were known to everyone, even though most individuals had not
the slightest idea how they worked. Electronics became one of
the main hobbies of kids and adults. 

The vacuum tube started with Fleming who, in 1904,
invented the vacuum diode, known also as the kenotron,
thermionic tube, or simply the Fleming valve. Its original
function was to convert ac into dc, that is, to rectify. As men-
tioned previously, Edison discovered that current flows from
the hot filament to a positively charged plate placed in a light
bulb. This is because when something is really hot, electrons
are given off and they go to the positive plate (if one is present)
because the electrons are negatively charged. Edison did not
do anything with the discovery, but the effect is fundamental;
it is now sometimes called the thermionic emission or the
Edison effect. But it was De Forest in 1905 who made the vac-
uum tube the great device it became. He added a “grid” in
between the filament and the plate. The grid is just an ordinary
piece of wire mesh, like the type used to keep mosquitoes out.
By charging the grid differently, we can control the flow from
the filament to the plate. Charge it very negatively and elec-
trons will be repelled; charge it positively and electrons will be
more than encouraged to flow to the plate. Therefore, the grid
can control the rush of electrons. If we have small variations in
the grid voltage, they will be amplified as large variations in
the gushing current. Thus, amplification was born and so was
modern communication since the weak signal from a trans-
mitter miles away could now be amplified. The vacuum tube
became the most important device until it was replaced by the
transistor in the early 1950s. There was an incredible variety of
vacuum tubes, and there were vacuum tubes with more than
just three elements. A one-grid tube was called a triode
because it had three elements: filament, grid, and plate.
Tetrodes and pentodes were four- and five-element tubes.
Catalogs of these tubes were published, each page describing
the tubes’ characteristics.

THE VACUUM TUBE AND NOISE
Everyone knew that the vacuum tube would play a prominent
role in the future promise of electricity. It was as high tech as
you could get. Noise played a fundamental role in the under-
standing and technology of the vacuum tube and, subsequent-
ly, in the technology of semiconductor devices. The main
initial contributors were Schottky, Johnson, and Nyquist.
Perhaps it is appropriate here to mention two other fields in
which electrical engineering has produced great ideas in theo-
ry, mathematics, and engineering. Each of these certainly
deserves a book of its own, but we only mention them briefly
here. The first is modulation theory. In the development of
radio, two methods of transmission were invented, amplitude
modulation and frequency modulation. The behavior of addi-
tive noise on these two methods was a very important develop-
ment, and much of noise theory stems from attempts to
understand which method is less sensitive to noise. Also, mod-
ern communication theory is based on stochastic processes for
many reasons. Among them is that the fundamental idea of
transmitting information involves probabilistic considerations.
This was initiated by the classic papers of Shannon.

SHOT AND THERMAL NOISE: 
SCHOTTKY, JOHNSON, AND NYQUIST
The common view that Schottky discovered shot noise and
Johnson discovered thermal noise is not correct. Walter
Schottky was a physicist who interacted with some of the
great scientists of his time, such as Planck. Schottky’s range
of contributions is extraordinary, both in theory and experi-
ment, and many effects carry his name. We have Schottky
diodes, the Shottky barrier, the Shottky effect, among others.
Also, he was perhaps one of the first scientists to be involved
with both academia and industry, but he spent most of his life
at the industrial laboratory, Siemens. He was one of the
founders of semiconductor physics and solid-state physics. He
was born in 1886 in Switzerland, but spent most of his life in
Germany. Passing away at the age of 90, Schottky lived to see
what he had wrought. 

Schottky wrote his thesis on special relativity but was
equally facile in vacuum tubes. He realized that the vacuum
tube was the device that would revolutionize the world. He not
only made fundamental contributions to vacuum tubes but to
many other fields as well. Schottky, in a milestone paper in
1918, was the first to consider what is now called shot noise
and thermal noise [17]. We emphasize that he considered both.
What is now called shot noise is called such not because it is
named after him. Schottky called it “shroteffekt,” which in
German means shot effect, with shot meaning pellets, like
gunshot; hence, “shot” noise. 

Think of the current flowing from the hot filament to the
plate as being composed of baseballs; the current is propor-
tional to the number of balls coming on average per unit
time. Since the baseballs are being thrown at random, in the
sense that the actual time of emission is not fixed but the
average number is, the current has instantaneous fluctuations
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about the average, sometimes more and sometimes less than
the average, with the variations adding up to zero. These vari-
ations are the “noise,” in particular, the shot noise. The analo-
gy often used is that of rain drops falling on a roof. During a
steady downpour, the amount
of water coming down is the
same over the time scale of
minutes. But imagine slicing
time up in fractions of sec-
onds. Then, the number of
raindrops varies from one small
time interval to another small time interval, and the difference
produces a nonsteady sound. Compare, for example, the
sound of raindrops on a roof with that of gushing water. It is
the fluctuations that we call noise. Now, the common usage of
“shot noise” is any stochastic process that is a sum of discrete
events, the shot noise being the fluctuations around the mean
value of the process. Incidentally, the existence of shot noise
in a vacuum tube is evidence that electricity consists of little
balls as, of course, it does, namely, electrons. 

Thermal noise is due to the fact that some electrons in a
conductor are loose. In fact, they are so loose one can think of
a piece of conductor as a box with electrons in it, just like the
gas molecules in a room. The electrons are moving around
randomly due to the same reason atoms move around random-
ly in a gas. On average, there are as many moving to the right
as to the left. Hence, on average, the current, or the net charge
moving, is zero if there is no applied voltage. However, there
could be fluctuations, that is, at an instance there could be
more electrons moving to the right than to the left, and the
fluctuations produce a momentary current. The electrons have
a distribution of speeds, and it is reasonable to assume that the
wider the distribution of speeds, the higher the fluctuations.
However, the width of the distribution is proportional to tem-
perature and, hence, the effect is temperature dependent; thus,
the phrase thermal noise. 

Johnson was involved in the whole issue of noise from the
beginning, and he clarified many issues in regard to both shot
noise and thermal noise. According to Johnson [18],
Schottky’s paper “did not get to the United States until about
1920.” Johnson was an experimentalist, but he was well versed
in the theory involved. Many experiments were conducted,
including those created in Schottky’s laboratory, on these
noise effects. While Johnson was involved in all the issues, over
a period of years he did fundamental experiments on what we
now call thermal noise. Both he and Harry Nyquist were at
Bell Laboratories. They published back-to-back papers on the
effect in Physical Review in 1928 [19], [20]. Johnson reported
the experimental results and Nyquist gave a very general and
very elegant derivation of the effect which, incidentally, led to
many quantum mechanical discussions. Johnson’s paper was
16 pages, and Nyquist’s was just four. Johnson’s abstract starts
with “Statistical fluctuations of electric charge exists in all
conductors, producing variations of potential between the ends
of the conductor.” In the introduction, he emphasizes that

thermal noise “is often by far the larger part of ‘noise’ of a
good tube amplifier” and then goes on to give the details of the
experimental results he obtained. Nyquist’s abstract is just two
lines: “The electromotive force due to thermal agitation in

conductors is calculated by
means of principles of thermo-
dynamics and statistical
mechanics. The results
obtained agree with the results
obtained experimentally.” The
main idea is to relate the fluc-

tuations to the temperature. He obtained the now famous
result (in his notation)

E 2dν = 4RkTdν, (22)

where E 2dν is the square of the voltage in the frequency inter-
val dν, and R is the resistance. Nyquist also commented that if
we use Planck’s law, we would get (I use angular frequency here)

E 2 = 2R
π

(
h̄ω

e h̄ω/kT − 1

)
. (23)

Nyquist comments that “Within the ranges of frequency and
temperature where experimental information is available this
expression is indistinguishable from . . . ” (22). What he meant
is that (23) reduces to (22) when h̄ω � kT, which was the case
for the situations at that time. However, this will turn out to be
a very important issue with quantum noise. (See the section
“Quantum Mechanics, Quantum Noise, and the Laser.”)

Of course, both Johnson and Nyquist are great figures in
electrical engineering. Nyquist made many fundamental contri-
butions, and certainly among his most important is the Nyquist
criteria for stability. His 1923 landmark paper on the subject,
“Regeneration Theory,” impacted almost every field of science,
as did his noise paper.

Noise became a fundamental study in electrical engineer-
ing. Also, the sources of noise in the atmosphere and how
noise affects transmission became very important for obvious
reasons. The search for the sources of noise was a major quest.
For example, weather, noise due to the atmosphere, the sun,
etc. In the late 1940s, Bell Laboratories undertook an effort to
find and understand all the sources of noise. They built a big
antenna and systematically pointed it in different directions to
find the sources of noise. However, there was a persistent low
noise level, no matter where the antenna was pointed. Since
the noise was always there, the first guess was that it was
instrumental. Everything possible was done to remove it from
the electronics, to no avail. Now, at that time there were two
competing theories of the universe. Hubble had discovered
that galaxies were moving away from each other and that the
further they are, the faster they were moving away. Gamow
and others came up with the idea that, indeed, the universe is

IT WOULD BE A DULL, 
GRAY WORLD WITHOUT NOISE. 



expanding, and he and others worked out the consequences.
Gamow predicted that, in the beginning, the whole universe
was the size of a basketball or football or something like that,
and it exploded pretty dramatically, as any one might well
imagine if we pack the whole universe to the size of a basket-
ball. Also, it was pretty hot, and hence there was a lot of light
in the beginning. Now, some 15 billion years later, it is pretty
cool, much like how a gas cools when it expands. Remember
that all bodies radiate and that radiation is called blackbody
radiation and is temperature dependent. Gamow estimated
that the radiation now was about 10 K.

The competing theory of the origin of the universe was
that of Hoyle, Bondi, and Gold, who figured that the universe
must have always been around and pretty much in the same
form it is now, in a “steady state.” Yet, not quite in steady state
since they could not deny the expansion of the galaxies;
hence, the density would have to be decreasing. To compen-
sate for the fact that galaxies are moving away from each
other and the density is decreasing, they argued that matter
must be created in such a way to keep the density the same.
Of course, in their model there should be no leftover radia-
tion. In what would turn out to be one of the greatest ironies
of all time, to show how preposterous the Gamow model was,
Hoyle called it the “Big Bang” to deride it. We should say that
Hoyle was a great astronomer and was one of the astronomers
who came up with the mind-boggling idea that all atoms
except hydrogen and helium were formed in the center of
stars. Therefore, keep this in mind: all of us came from a star.
Well, at least our atoms did.

Anyway, Dickie, a prominent physicist at nearby Princeton
University, was working out how to find and measure the left-
over radiation as well as how one could find the funds to do it.
Penzias and Wilson, who were working on the Bell project, went
to see Dickie for advice on a possible explanation for the isotrop-
ic noise they were measuring. Dickie immediately realized what
they had discovered, and the rest is history. Everyone now
accepts the expansion of the universe. The leftover noise that
permeates the universe is equivalent to a source at 3 K, and that
is why it’s called three-degree blackbody radiation. The fact that
this noise exists immediately put an end to the steady-state the-
ory of the universe, much like noise had put an end to the anti-
atomists some 50 years earlier. However, the phrase Big Bang,
the term of derision, has stuck. 

Stochastic processes is a bread and butter subject in electri-
cal engineering for various reasons. In addition to the ones
mentioned above, another important reason is that one must
know how noise is transformed (propagated) by devices and
processes. This is a fundamental issue in probability theory, and
electrical engineers have developed it to very high levels.

THE MATHEMATICS OF NOISE
The mathematics of noise was invented by Bachelier, Einstein,
Smoluchowski, and Langevin. This occurred within a period of
six or seven years, and all worked independently of each other,
except for the case of Langevin, who knew Einstein and his work

well; indeed, his paper was motivated by Einstein’s result. These
authors initiated a major mathematical development that con-
tinues to this day and that has been applied to an incredible vari-
ety of important problems in almost every field of science and
engineering with immense success. The field was further devel-
oped over the next 50 years by a number of scientists and math-
ematicians who have come up with the mathematical
methodologies that are standard today. Here, we just mention
some of the main ideas and scientists. We have already discussed
the contributions of Einstein, Langevin, and Bachelier. 

SMOLUCHOWSKI
Smoluchowski did almost everything Einstein did, and more.
He worked out Brownian motion from both the physics and
mathematical points of view, and he also considered many
issues that Einstein did not. For example, the behavior of the
particle when there is an external force such as the force of
gravity, the concept of a transition probability, among other
standard issues. Smoluchowski is pretty well known to physi-
cists and chemists who do stochastic processes, but he is rarely
mentioned in other fields. To give Smoluchowski any justice in
a few pages is impossible. In the words of Chandrasekhar: “The
theory of density fluctuations as developed by Smoluchowski
represents one of the most outstanding achievements . . . .” and
while he “is chiefly remembered as the originator (along with
Einstein) of the theory of Brownian motion . . . his role as the
founder of the present flourishing discipline of stochastic theo-
ry is not.” Smoluchowski would be a household name, scientifi-
cally speaking, if it wasn’t for the overshadowing by Einstein.
(This is similar to the case of Robert Hook, one of the greatest
scientists of all time, who made major discoveries ranging from
biology to physics to construction of microscopes. He was over-
shadowed by Newton! When Newton said “If I have seen further
than others, it is by standing upon the shoulders of giants,” it
was in a letter to Hook; the implication being that Hook was
indeed one of those giants. However, many have speculated that
it was a comical remark since Hook was small and a hunch-
back. Nonetheless, Hook was a giant and so was Smoluchowski,
both overshadowed.) 

ORNSTEIN, WANG, UHLENBECK, FURTH,
CHANDRASEKHAR, KRAMERS, RICE, AND OTHERS
These authors wrote the fundamental mathematical papers on
the subject in the 50-year period  after the initial development
by Einstein, Bachelier, Smoluchowski, and Langevin. The papers
of these authors are classic. They are remarkably well written,
clear, and direct. They are many orders of magnitude better to
read than the numerous books on stochastic differential equa-
tions that have appeared over the last 50 years. These authors
were not concerned with esoteric issues but with the develop-
ment of important mathematical ideas and methods. 

It is worthwhile to crystalize the two different approaches
that have been developed, the relation between the two, and their
advantages and disadvantages. The methods are most commonly
called the Langevin approach and the Fokker-Planck approach.
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THE LANGEVIN APPROACH
The basis of the method is, of course, Langevin’s idea that one
starts with Newton’s law for the situation and puts in the stochas-
tic force as if it was like any other force. One then imposes the sta-
tistical properties of the random force. We can best illustrate with
what is now called the Ornstein-Uhlenbeck process. Take

du
dt

+ βu = A(t) (24)

and treat it as an ordinary differential equation with a time-
dependent force, A(t). Solving it as an ordinary differential
equation, one has

u(t) = u(0)e−β t + e−β t
∫ t

0
eβ t ′

A(t ′)dt ′. (25)

Also square, 

u2(t) =u2(0)e−2β t + 2u(0)e−2β t
∫ t

0
eβ t ′

A(t ′)dt ′

+ e−2β t
∫ t

0

∫ t

0
eβ t ′+β t′′ A(t′)A(t ′)dt ′′dt ′. (26)

Everything is deterministic. The stochastic issue comes into
play by taking the ensemble average of both sides and impos-
ing the statistical properties for u2(0), u(0)A(t), A(t), and
A(t ′)A(t ′). In particular, if one assumes that u(0) and A(t) are
not correlated, A(t) is mean zero, and 〈A(t ′)A(t ′′)〉 = δ(t ′ − t ′′),
then one gets

〈u〉 =u(0)e−β t (27)

〈u2〉 =〈u2(0)〉e−2β t + 1
2β

(1 − e−2β t). (28)

Note that

〈u〉t→∞ = 0 (29)

〈u2〉t→∞ = 1
2β

. (30)

These results are very important, and they have been obtained
in a few simple steps. But suppose now someone wants 〈u 4〉,
one has to start all over again, that is, raise u(t) in (25) to the
fourth power and redo the analysis. Moreover, suppose we
want the probability distribution of u and not just the
moments. Further suppose we want the expectation values of
position, then we have to integrate (25) and again do every-
thing all over again. Further, again, suppose we want the joint
probability distribution of position and velocity. How do we do
that? So the basic idea here is that, in the Langevin method,
one gets specific moments quickly and easily. Moreover, the
Langevin equation is transparent because it is Newton’s equa-
tion. Hence, we can easily verbalize the forces involved.
However, the Langevin method does not give you the proba-

bility distribution. Of course, if one were to carry out the cal-
culation of 〈un〉 for all n, that is, if one were to explicitly cal-
culate all the moments, then of course the distribution could
be obtained in principle. This is the case since, generally, the
moments of a distribution determine the distribution. (There
are some exceptions, but that’s another story.)

FOKKER-PLANCK AND RELATED METHODS
The aim of the Fokker-Planck method is to write a differential
equation for the probability distribution as it evolves in time.
The probability distribution can be for position, velocity, or
both, or for other variables, depending on the problem. For
example, the Fokker-Planck equation for the Wiener process is
the Einstein equation, (3). For the Ornstein-Uhlenbeck process,
(20), the Fokker-Planck equation is

∂ P(x, t)
∂ t

= γ
∂

∂ x
xP(x, t) + D

∂2 P(x, t)
∂ x2 (31)

and the impulse response solution is

P(x, t |x ′, t ′) =
√

γ√
2πD

(
1 − e−2γ (t−t ′)

)

exp


−

γ
(

x − x ′e−γ (t−t ′)
)2

2D
(
1 − e−2γ (t−t ′)

)

 . (32)

This is the probability impulse-response function or Green’s
function for a particle “obeying” the Ornstein-Uhlenbeck
process, (24). How to go from a Langevin equation to a Fokker-
Planck equation is a major mathematical development that is
still ongoing, particularly for issues of quantum noise. There is a
whole set of methods and ideas associated with this develop-
ment, such as the Kramers-Moyal, Chapman-Enskog expan-
sions, and master equations, among other ideas. All fall under
the general umbrella of obtaining the equation of evolution for
the probability density. Of course, the Boltzmann equation is
one such equation. Besides the names mentioned, we point out
that Kolmogorov gave a general approach for obtaining such
equations when the process is Markovian.

PEARSON, RAYLEIGH, KAC, AND RANDOM WALKS
Pearson was a major figure in statistics and, in fact, can be con-
sidered as one of its originators. He got involved in all applica-
tions and also in many fights with the other major statistician,
Fisher. One of Pearson’s interests involved the statistics of
migration of “populations,” that is, attributes, and it was
because of this fact that he came up with the random walk prob-
lem: “A man starts from a point O and walks l yards in a straight
line; he then turns through any angle whatever and walks
another l yards in a second straight line. He repeats this process
n times. I require the probability that after these stretches he is
at a distance between r and r + dr from his starting point O.”
This appeared in an article in Nature in 1905 [21]. Rayleigh



noticed that the mathematics of this problem were identical to
another problem he solved 25 years earlier and gave the answer
for large r [22]. I am not sure who was the first to make a specif-
ic connection between the random walk and Brownian motion,
but I believe it was Smoluchowski. Many years later, Kac [23]
wrote a very important paper on the random walk. He consid-
ered random walks with forces and also with absorbing barriers.
He formulated the discrete problem in terms of Markov chains
and showed how one can go to the continuous limit to obtain
the standard Fokker-Planck type equations.

S.O. RICE
Rice’s classical paper, “Mathematical Analysis of Random
Noise,” which he divided into four parts and published in the
Bell System Technical Journal, is the foundation and method-
ology for modern noise calculations [24]. The paper is sweep-
ing, consisting of 162 pages and addressing almost all aspects of
noise. It was published in two consecutive volumes in 1944 and
1945. Not only did Rice prove many fundamental results, but
he also devised the methods for
how noise gets transformed by
an electrical device; this is of
fundamental importance in
physics and engineering. 

THE MATCHED FILTER
The matched filter concept was invented by Van Fleck and
Middleton, and independently by D. North. It aims at detecting
a signal after noise has been added, which of course is the case
when a signal propagates. The method was invented during the
Second World War. Van Fleck was one of the great physicists of
the last century, and Middleton, also a physicist, made many
important contributions. Middleton’s book Introduction to
Statistical Communication Theory is one of those texts that is
so extraordinary for its clarity and depth that one marvels at it
and the author. It is perhaps the greatest book ever written on
noise, probability theory, and stochastic processes. The idea of
the matched filter is that, in some optimal sense, the best
detector is obtained by correlating the signal at hand with the
signal that we suspect is in the noise. Van Fleck and Middleton
published the method in a report at the Harvard Radio
Research Laboratory, and North published it as a report at RCA
Laboratories; both were published around 1943 and both were
secret reports. Now, the matched filter is a routine detection
method in radar and sonar, among many other fields.

FUNDAMENTAL DERIVATIONS OF NOISE
Since we know the governing equations for the motion of
atoms or light, it has always been a major aim in science to try
to understand and derive the macroscopic probabilistic equa-
tions, whether it is the Langevin equation or Fokker-Plank
equation from the fundamental equations of motion, be it
Newton’s laws or the Schrödinger equation. For example, can
one derive the Langevin equation from the motions of the
atoms and show that the random term is indeed white noise?

Many have given such fundamental derivations, and it is still an
active research problem, particularly for the quantum case. Of
course, the whole concept of trying to understand the macro-
scopic issues of statistical mechanics from microscopic consid-
erations originated with Boltzmann and others, as we have
discussed. Ehrenfest’s famous little book called The Conceptual
Foundations of the Statistical Approach to Mechanics, pub-
lished in 1912, crystallized this aim [25]. Perhaps the first work
to derive the Langevin equation is the well-known paper by
Ford, Kac, and Mazur. The recent papers by O’Connell and Ford
gives a general model for deriving Langevin-type equations,
both in the classical and quantum cases.

BOOKS
Incidentally, Middleton’s book is one of the green books pub-
lished by McGraw-Hill in the series titled International Series in
Pure and Applied Physics, which includes legendary books by
many authors of the highest scientific caliber, including Slater,
Straton, Morse and Feshbach, and Kennard. The series was edit-

ed by Schiff, the author of the
classic textbook on quantum
mechanics. Also, McGraw-Hill
had another illustrious series
titled Electrical and Electron
Engineering Series. For those
of us who remember those

books and books like them from different publishers, I think it is
worthwhile to mention that these texts brought forth emotions
not typical of today’s books. Depending on the individual, they
could be inspiring or depressing, or both. Inspiring because they
were monumental in every way, but mostly because they were
able to convey ideas simply. Depressing because one cannot
understand how anyone can absorb a subject with such clarity
and be able to describe that knowledge with such succinctness
and simplicity. These types of books are still being written, but
today it often seems that the merit of a book or paper is how
many backward epsilons and upside down “A”s it has. Being
more than a little familiar with ∈ and ∀ because I studied sym-
bolic logic when I was young, I wonder how it is that so many
classic papers do not use them. How did the world invent the
fundamental equations of nature, Maxwell’s equation,
Newtonian mechanics, quantum mechanics, semiconductors,
and the laser without using any ∈ and ∀? I do not think any
Nobel Prize winner ever published a paper that used ∈ and ∀. I
know a very famous scientist/mathematician who says he will
not read any paper that contains ∈ and ∀. In fact, no less then
the world’s authority on mathematical notation, Knuth—the
man that brought us TEX—says [26] (with Larabee and
Roberts): “Don’t use the symbols . . . ∈, ∀ . . . ; replace them by
corresponding words. Except in works on logic, of course.”

NOISE IN ASTRONOMY
The study of noise is basic in astronomy because it touches
almost every aspect of the field both theoretically and experi-
mentally. It would take a whole book to describe what
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astronomers have contributed, and we can not do it any jus-
tice here. It is without question that the most important and
interesting review article on noise was written by one of the
greatest astronomers of all time, Chandrasekhar, who also was
certainly one of the greatest scientific writers of all time [27].
Chandrasekhar wrote many articles on noise, and there is a
series of papers by him and von Neumann on the fluctuations
of the gravitational force, where many new ideas about noise
were developed [28], [29]. My own interest in the field came
from studying these classic papers, and they motivated me to
verify some of the results by computer simulations.

One of the reasons noise is so important in astronomy is
that one is always studying fluctuations, for example, in the
light output, in scattering, in density. Also, often in astrono-
my, physical quantities that are being measured have such a
low intensity that fluctuations or noise become increasingly
important. However, an equally important historical reason is
that of “spectral lines.” The reason we have discovered so
much about the universe is that atoms and molecules can be
identified by their spectral lines—spectral lines fingerprint
atoms and molecules. This was one of the most important dis-
coveries of all time, and it is what opened modern science and
engineering. The discovery that spectral lines can be used as
identifiers of atoms and molecules was made by Bunsen and
Kirchoff around 1850 and immediately become the most pow-
erful method for discovering what atoms or molecules exist in
a piece of paper, or on a planet, or on a star. The reason for,
and the understanding of, why spectral lines are unique to
each atom and molecule did not come about until the discov-
ery of the quantum mechanical laws of nature. But the impor-
tant thing for our consideration is that spectral lines have
widths, and the widths are an indication of the environmental
parameters, such as temperature and pressure. But spectral
line widths are fluctuations, that is, noise. Typically, the shape
of a line can be Gaussian or Lorenzian. The mathematical
development for the study of these widths, and the discovery
of the physical mechanisms producing the widths, has been
an active area of research for over 100 years, with major con-
tributions by astronomers.

WIENER AND PERRIN: PATHOLOGICAL 
FUNCTIONS AND THE WIENER PROCESS
We will soon give a short history of “pathological” functions,
functions that are continuous everywhere but nowhere differ-
entiable. These are the functions that Poincaré said “will
never have … use” and that Hermite called “a plague.” It is
fascinating that it was Perrin, the experimentalist, who first
speculated that perhaps Brownian paths are continuous, but
nowhere differentiable. And it was Perrin who inspired Wiener
to develop idealized Brownian motion paths and prove mathe-
matically that, indeed, they are continuous but nowhere dif-
ferentiable. To quote Wiener: “The Brownian motion . . . .
There were fundamental papers by Einstein and
Smoluchowski that covered it, but whereas these papers con-
cerned what was happening to any given particle at a specific

time, or the long-time statistics of many particles, they did
not concern themselves with the mathematical properties of
the curve followed by a single particle. Here the literature was
very scant, but it did include a telling comment by the French
physicist Perrin in his book Les Atomes, where he said in
effect that the very irregular curves followed by particles in
the Brownian motion led one to think of the supposed contin-
uous non-differentiable curves of the mathematicians. He
called the motion continuous because the particles never
jump over a gap, and non-differentiable because at no time do
they seem to have a well-defined direction of movement.”

We quote from Perrins’ book: “the apparent mean speed of
a grain during a given time varies in the wildest way in mag-
nitude and direction and does not tend to a limit as the time
taken for an observation decreases” and “nature contains
suggestions of non-differentiable as well as differentiable
processes.” Wiener [30] picked up the idea and developed the
mathematics to the satisfaction of some mathematicians. So
here we are around 1915–1925, about 50 years after the
beginning of the “growing plague,” the construction of
pathological functions, an experimentalist, Perrin, finally
says maybe there is something to them!

Try to imagine a function that is continuous but nowhere
differentiable and perhaps you will agree with Hermite, the
great astronomer and mathematician: “I turn away in horror
and disgust from the growing plague of nondifferentiable func-
tions.” The great Poincaré said “Yesterday, if a new function
was invented it was to serve some practical end; today they are
specially invented only to show up the arguments of our
fathers, and they will never have any other use.” Nonetheless,
the development of these pathological functions continued
with major contributors such as Cantor, who brought us the
super infinite, the idea that there are regular infinities and
then there are super infinities. In particular, the infinity of
integers is the same as the infinity of fractions, but the infinity
of irrational numbers is greater than the infinity of the inte-
gers or fractions. Then there was Peano, who brought as the
formalization of mathematics and space-filling curves, as well
as many others such as Koch. Every school child now gets a
math project to draw Koch curves and, of course, we now have
the “fractals are everywhere” movement.

To give an idea why all this was so dramatic, we briefly review
the concept of a function, culminating with Weierstrass’s con-
struction of a nowhere differentiable but continuous function.
The concept of a function has a long history and has been one of
the main themes in mathematics for about 250 years.
Differentiability also has a long and deep history, and of course
the two are intertwined. We all learn that a function can be con-
tinuous but not differentiable, and from a simple viewpoint all
that means is that a function can have a kink at a point and
hence the tangent to the curve is not uniquely defined. The mod-
ern concept of a function, the idea that to an independent vari-
able we associate a value, began to develop in the mid-1700s with
a major controversy of the discoverers of the wave equation,
Euler and d’Alembert. d’Alembert said a function must be



smooth if it is to be a solution of the wave equation, but Euler
said it can have kinks and still be an initial condition to the solu-
tion to the wave equation; after all, that is how a violin string is
plucked. d’Alembert argued that it clearly could not be so
because the wave equation has a second derivative. Incidentally,
Bernoulli also jumped in and basically gave the beginnings of
what we now call Fourier analysis. This controversy started it,
but it is historically clear that the issue and controversy of “what
is a function?” achieved great intensity with Fourier.

FOURIER, HEAT, AND JUMPS
Fourier was a physicist and solved the main problem of his time.
By the time Fourier was around, the wave equation had already
been discovered and the problem of the century, so to speak, was
the nature of heat, and getting the heat equation. Fourier got it,

∂T (x, t )
∂ t

= κ
∂2T (x, t )

∂x 2
, (33)

where T(x, t) is the temperature at position x at time t. There
was no controversy about the equation, and everyone knew that
finally the heat equation was discovered. Fourier did this around
1800, and his famous book called The Theory of Heat was pub-
lished in 1822. The book is available from Dover for a few dollars.

However, along the way, Fourier found methods of solution
that were more than unusual. He claimed that any function,
particularly functions that have jumps, defined in the interval
[−L, L] can be expressed as

f(x) = a0/2 +
∞∑

n=1

an cos
nπ

L
x +

∞∑
n=1

bn sin
nπ

L
x. (34)

This was an apparently absurd claim, and many of the greats of
that time thought that it was more than preposterous. The
reason they thought so is that since sine and cosine are analyt-
ic continuous functions and do not jump in value, the sum
should also not jump in value! The reason it is important that
any function be expandable is due to the following typical heat
problem. Think of an object at a certain temperature and put it
in contact with another object at a different temperature. How
does the temperature evolve in time at every point in both
objects? The heat equation allows one to solve that problem.
But what are the initial conditions? At the interface, the
objects are at different temperatures and, hence, there is a
jump at a point as one goes from one object to another.
Fourier analysis enables the handling of a jump! 

These issues led to the fundamental question: What func-
tions have a Fourier expansion? Dirichlet was the first to crys-
talize the issue by giving sufficient conditions for a function to
have a Fourier expansion. Dirichlet himself then invented a
function that has no Fourier expansion and, moreover, does
not seem to have an analytic expression in the sense we are all
used to. The Dirichlet function is that f(x ) = 0 when x is
rational and f(x ) = 1 when it is irrational. Try to draw it. So
Dirichlet invented a nutty function and showed that it has no

Fourier representation, but surely we are interested in smooth
functions, whatever that means. One had the sense that for
continuous functions, everything is more or less all right
except maybe at a few points. But a few years later, around
1870, Karl Weierstrass startled everyone who cares about such
things by constructing a function that is everywhere continu-
ous but has a kink at every point. That is, it is continuous
everywhere but differentiable nowhere! For those who have
never seen the famous Weierstrass function, it is

f(x ) =
∞∑

n=1

bn cos a nπ x, (35)

where b is any number between zero and one, a is an odd inte-
ger, and the product ab is so chosen that ab > 1 + 3π/2. In the
same year, Heine, based on ideas of Weierstrass, gave us what we
all loved in calculus, namely, the “for every epsilon there is a
delta” definition of a limit. 

So now we have continuous curves being kinky in every way.
Every point is a kink! This caused quite a stir among certain
mathematicians, and debates ensued as to whether these func-
tions are important or just pathologies not worthy of study.
Some loved it and some hated it. The construction of such func-
tions continued, and are now sometimes referred to as “patho-
logical functions.” All kinds of pathological functions were
constructed, including space-filling curves.

While all this was very interesting to mathematicians who
cared about such things, it is certainly the case that for the first
50 years or so after Weierstrass, no scientist took these func-
tions seriously in the sense that anything in nature would be so
pathological. There was no discussion that these functions rep-
resented anything in nature or would be useful to represent any-
thing in nature. So it is that much more surprising that Perrin
would be the one to suggest that such functions may indeed
represent some aspects of the real world!

WIENER
Wiener was one of the last traditional great mathematicians
who knew and contributed to physics and engineering. Indeed,
it can be argued that he was one of the founders of modern
electrical engineering, having made very basic and important
contributions to control theory, filtering, stochastic processes,
and noise. He was a child prodigy who had great ambitions.
Wiener realized that there is rich mathematics behind the
Einstein-Smoluchowski formulation of Brownian motion. The
main issue that attracted him was defining Brownian paths
from a mathematical point of view. The inherent difficulty and
the mathematical interest is that, as Perrin pointed out, while
the paths are continuous, they can suddenly change directions
and hence are not differentiable. Another way to look at it is
that the standard deviation goes as the square root of time, and
hence the standard deviation divided by time goes as one over
the square root of time and diverges for time going to zero. So
Wiener formulated Brownian motion paths armed with what
was in the air at that time, measure theory. He formalized and
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defined, from a mathematical viewpoint, a probabilistic process
that was an idealization of Brownian motion as formulated by
Einstein and others [30]. This was in 1923. It is a gross mistake
to claim, as many books do, that Wiener developed the mathe-
matics of Brownian motion. Wiener’s true contribution was in
defining “measure” for Brownian paths. I know from experi-
ence that most people fall asleep when one starts to talk about
“measure,” but let us just say that probability theory in the last
80 years or so has been formulated in terms of measure and
sets and stuff like that. In fact, probability is reduced to an
axiomatic formulation in terms of spaces and sets, something
that is appealing to some. It is commonly said in the mathe-
matical literature, and even sometimes in the engineering liter-
ature, that Wiener showed that Brownian motion exists! What
is meant is that, given Wiener’s mathematical idealization, one
can prove that the process “exists” in some mathematical sense.

The “Wiener process” has come to be defined as the “solu-
tion” of the differential equation

dW(t)
dt

= F(t), (36)

where F(t) is white noise. That is, F(t) is a random function
that has mean zero and F(t)F(t ′) = δ(t − t ′). Also, one can
define the process by saying that a) W(t) is mean zero, b) the
variance of W(t ) − W(t ′) = t − t ′ , and c) If t1 < t2 . . . < tn,
then W(t2) − W(t1), ..., W(tn) − W(tn−1)are mutually inde-
pendent Gaussian variables. But note that (36) is just a special
case of the Langevin equation, and its basic properties have
been developed by the mathematicians and scientists men-
tioned in the section “The Mathematics of Noise.” Its quite
clear that if one wants to associate a name with the funda-
mental results of (36), it should be Bachelier or Einstein or
Smoluchowski. In fact, sometimes this is done even in the
mathematical literature. It is a mistaken view to say that
Wiener developed the properties of Brownian motion. What
he did was formulate a measure description for the paths. If
you don’t know what that means, that’s fine. Most people who
misuse the phrase “Wiener process” don’t either. 

THE TERMINOLOGY “BROWNIAN MOTION”
Unfortunately, there currently are two uses of the phrase
“Brownian motion”: the physical phenomena of the scientists
and the “mathematical” Brownian motion as defined by
Wiener and others. I can think of nothing worse than this
state of affairs because it implies a gross misrepresentation of
history. The mathematics of Brownian motion were devel-
oped by Einstein, Smoluchowski, Bachelier, and all the oth-
ers mentioned in the section “Mathematics of Noise.” As we
said above, Wiener, as well as others whom we discuss in the
next section, made an important contribution from a certain
mathematical perspective that is not necessarily of interest to
all. It is not uncommon in the mathematical literature to
simply give a mathematical definition of noise or Brownian
motion in terms of spaces and sets and then state that

“Wiener proved it exists,” never mentioning the monumental
works of the great mathematicians we discussed above, start-
ing with no less a figure than Einstein.

THE “EMBARRASSMENT” AND ITS SOLUTION: 
DOOB, ITÔ, AND STRATONOVICH
The mathematics of noise as developed by the scientists and
mathematicians mentioned in the section “The Mathematics of
Noise” is wonderful, profound, and deep. I emphasize that, in
this section, we describe a different kind of mathematical
motive, and I leave it to the reader to label it. One must never
forget the Wang-Uhlenbeck admonition that appeared in a foot-
note of their classic 1945 paper on Brownian motion [31]: “The
authors are aware that in the mathematical literature . . . the
notion of a random (or stochastic) process has been defined in a
much more refined way . . . . However it seems to us that these
investigations have not helped in the solution of problems of
direct physical interest.” Every interested reader must decide for
himself whether this statement is still true after many more
years of mathematical refinement. From a purely mathematical
point of view, Norbert Wiener started it, with subsequent contri-
butions by Levy, Kolmogorov, Doob, and others. We already
mentioned that Ornstein, Wang, and Uhlenbeck were the first to
study in full detail the Langevin equation, which we repeat here
for convenience [31], [32]

du(t)
dt

+ βu(t) = F(t). (37)

Doob [33] made important contributions because he devel-
oped certain mathematical issues regarding it. In his own
words, “A stochastic differential equation will be introduced
in a rigorous way to give precise meaning to the Langevin
equation . . . this will avoid the usual embarrassing situation
in which . . . the second derivative of x(t) is used to find a
solution x( t ) not having a second derivative.” This is a cru-
cial statement and the first time I read it, over 40 years ago, I
didn’t get the “embarrassing” situation. First, one must be
very careful to understand what “a stochastic differential
equation will be introduced” means. What it means is that he
will reformulate the Langevin equation so that one can study
its properties in a rigorous way. As to “avoid the usual embar-
rassing situation in which . . . the second derivative of x(t) is
used to find a solution x(t) not having a second derivative,”
what he means is the following: First, of course, since
u = (dx(t))/dt, then (du(t))/dt = (dx2(t))/dt2 . His point of
embarrassment is that we know that the paths have kinks so
the derivative doesn’t exist, but nonetheless we write an equa-
tion that has a nonexistent derivative and then try to solve it
to get a quantity that does exist. There have been many such
“embarrassments” in the history of mathematics. To give a
modern example, many pure mathematicians laughed at
Heaviside for his operational calculus and also laughed at the
delta function. But whether one should be embarrassed by
such a powerful method is a question of taste.



The problem, to quote Doob, “is to find a proper stochastic
analog of the Langevin equation, remembering that we do not
expect u ′(t) to exist.” What Doob did was rewrite the Langevin
equation in the form 

du(t ) = −βu(t )dt + dF (t ). (38)

He aimed to “give these differentials a suitable interpretation.”
So he developed the properties of the differentials, which basi-
cally means the differences, and never had to consider deriva-
tives in the usual sense. 

It is a general consensus among certain mathematicians that
Itô opened the modern thinking of stochastic differential equa-
tions [34]. First, one considers the more general type of
Langevin equation

du(t)
dt

= a(u(t), t) + b(u(t), t)F(t). (39)

Since we have no idea how to define differentiability when it
comes to a random process, Itô says, instead of (39), convert it to

u(t) − u(0) =
∫ t

0
a(u(t ′), t ′)dt ′ +

∫ t

0
b(u(t ′), t ′)F(t ′)dt ′.

(40)

Of course, writing (40) is what is typically done in the study of
the Langevin equation, as described in the “The Mathematics of
Noise” section. However, now we transform the mathematical
issues from worrying about how to define differentiability of a
stochastic variable to defining the integral of a process. The idea
here is that if we can give a sensible definition of an integral of a
stochastic process, we will then have a rigorous mathematical
description and avoid issues of differentiation. Itô defines a gen-
eral stochastic integral by

lim
N→∞

∫ t

0
B(t ′)dF(t ′)dt ′ = lim

N→∞

N∑
i=1

B(ti−1)

× [F(ti) − F(ti−1)]. (41)

This allows one to develop the mathematics in a consistent fash-
ion because we have defined what a stochastic integral is.
Moreover, and crucially important, one can manipulate stochas-
tic differentials in a consistent manner, much as we are used to
manipulating ordinary differentials in calculus. For example,
one can make a change of variables and get a new stochastic
process, chain rule, etc. The calculus thus developed has a num-
ber of strange properties, strange only in the sense that it does
not obey the usual rules of differentials of ordinary calculus.

Stratonovich defined the stochastic integral in a different
way, namely by [35]

∫ t

0
B(t ′)dF(t ′)dt ′ = lim

N→∞

N∑
i=1

1
2

[B(ti) + B(ti−1)]

× [F(ti) − F(ti−1)], (42)

and showed that one then gets rules of manipulation that are
closer to the rules of ordinary calculus. 

Of course, if the quantities B and F were ordinary functions,
one would get the same answers for the Itô and Stratonovich
integrals. It is remarkable that such similar definitions for the
integrals can produce very different results when B and F are
random processes.

QUANTUM MECHANICS, QUANTUM 
NOISE,  AND THE LASER
Since quantum mechanics is so different than classical mechan-
ics, and since quantum mechanics is inherently probabilistic,
one would expect it would produce a new kind of noise. Indeed,
that is the case. The most important and interesting develop-
ments in noise theory and applications over the last 50 years
have come from quantum mechanics, specifically, that which is
called quantum noise. It is full of new ideas, new phenomena,
new methods, and new applications, all undreamed of in the
standard formulation of noise and probability. 

Quantum mechanics is not only the most successful theory
ever devised, but the panorama of successes—from atoms to
molecules, to solids, to liquids, to transistors, to lasers, to
explaining the age old riddle of the source of the sun’s energy
and light, and numerous other phenomena—stagers the imag-
ination. Newton’s equations have been replaced by the
Schrödinger/Heisenberg equation of motion. However, besides
its successes, quantum mechanics has totally changed our
view of the world because it is an inherently probabilistic theo-
ry. It is curious enough that the basic workings of nature are
probabilistic, but what is also curious is the type of probability
theory it is—totally different than standard probability theory
devised over the last 300 years. The fact that quantum
mechanics is so successful and yet so different than standard
probability theory is a great mystery that has not yet been
explained. Obviously, whoever created the rules of this uni-
verse did not read the classic book by Feller or the axiomatic
formulation of Kolmogorov (or did read them and thought
they weren’t appropriate for this universe).

The reason quantum mechanics is so strange as a probability
theory is because one deals with operators and state
vectors/wave functions instead of classical functions, and yet one
ends up with measurable quantities that are probabilities and
expectation values. We also point out that, in quantum statisti-
cal mechanics, two sorts of probabilities exist: the inherent one
obtained from the wave function and also one that has to do
with “ignorance,” namely situations where we do not know the
wave function but can assign probabilities for having a variety of
different ones. This second probability is analogous to the prob-
ability in classical statistical mechanics. Hence, in general, two
probabilistic averages are done in such cases. Perhaps an analo-
gy is appropriate. Suppose we have two dice, a and b, and sup-
pose one of them is fair but the other has probabilities 1/2 to get
the number six and 1/10 for each of the remaining numbers.
Each die is an independent system, and we can calculate any
probability quantity we want for each die. So, for example, the
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expectation value of the first die is 3.5 and that of the second is
4.5. Let us call those two expectation values < a > and < b >.

But suppose that we do not know which die is going to be
thrown or suppose we throw a die infinitely often, but which die
we throw is given probabilistically. Let us call the probabilities
of choosing a particular die pa and pb. Now the expectation
value for the “system” is

〈system〉 =< a > pa + < b > pb. (43)

So, for example, if pa = pb = .5, then the expected value
would be four. In the quantum case, the calculation of the
averages < a >and < b > is done using the quantum mechan-
ical wave function and operators, but the second calculation,
(43), is the standard probabili-
ty method. To handle both
probabilities in a unified way,
Dirac and von Newman devised
a mathematical construct
called the density operator or
density matrix. 

The importance of quantum mechanics to the under-
standing of noise was addressed since the early days of quan-
tum mechanics and modern electronics. Moreover, the
fundamental calculations of Planck and Einstein on black-
body radiation can be viewed as noise calculations. Also, as
semiconductors became important, the understanding of
noise in them became extremely important, and quantum
mechanics must be used to understand semiconductors and
the inherent noise they produce. But starting with the inven-
tion of the maser and laser and the field of quantum optics,
quantum noise has been developed to a very high level. The
issues, both physical and mathematical, are challenging and
fascinating, and many fundamental problems remain
unsolved. Issues such as the quantum Langevin equation and
quantum Fokker-Planck equations are active areas of
research. Also, we mention that the vacuum according to
quantum mechanics, is not a “vacuum,” but is always fluctu-
ating and is a random process! Here’s one way to think about
it: Place one atom, let us take the simplest, a hydrogen atom,
in the traditional vacuum; then, according to elementary
quantum mechanics, the potential on the electron is due to
electromagnetic force due to the proton. Solving the hydro-
gen atom quantum mechanically and verifying the theoreti-
cal results experimentally was one of the great achievements
of quantum mechanics, and it was originally done by
Schrödinger. The comparison of experiment and theory is
outstanding in every way. However, more refined experi-
ments, such as the Lamb shift, do not agree with theory if
only the forces mentioned are taken into account. However, if
one assumes that the vacuum is not a “vacuum” but is pro-
ducing a fluctuating random electromagnetic force, then the
agreement with experiment is achieved. We emphasize,
though, that the fluctuating random force is not something
imposed, but it comes out of quantizing Maxwell’s equations.

The invention of the laser initiated an intense examina-
tion of quantum noise. The laser produces light of narrow
bandwidth around a particular frequency, and it was crucial
to understand the bandwidth from a fundamental point of
view, if for no other reason than to learn how to control it
and make better lasers. The bandwidth of any spectral line is
due to fluctuations or noise; otherwise, one would get just a
line. Traditionally, most calculations involving atoms and
electromagnetic fields were done by treating the atom quan-
tum mechanically, but treating the light as a classical elec-
tromagnetic field interacting with it. It became clear that
this approximation was not good enough to understand the
laser bandwidth and that one must treat both the atom and
light in a full quantum mechanical way. Three approaches

were developed. Scully and
Lamb used a density matrix
approach, Lax used the
Langevin equation approach,
and Haken and Risen used the
Fokker-Planck method. We
have already discussed the

Langevin and Fokker-Planck methods, but we point out that
for the quantum case, writing such equations is not
straightforward, as one has to deal with noise operators
rather than with classical random functions. It is worthwhile
at this juncture to discuss the density matrix approach, the
fundamental idea of which is best explained in the classical
context. Suppose that we have the usual room full of mole-
cules, let’s say 1023 of them. Now each one obeys Newton’s
laws and, hence, we have 1023 coupled, second-order differ-
ential equations. But we really don’t care about each mole-
cule because what we want is properties like the distribution
of velocity, the density of the gas, that is, the macroscopic
quantities. One can write the governing equation for the
probability distribution function for the 1023 particles and
that is called Liouville’s equation, which is equivalent to
Newton’s equations. Since we want to obtain the probability
distribution for one molecule, a typical molecule, one inte-
grates out from the Liouville equation one variable, then
another, and another, until 1023−1 variables are integrated
out. This results in governing equations for the reduced
probabilities, but they are all coupled. The idea is to uncou-
ple them through various approximations that depend on
the physical situation. In the classical case, this is called the
BBGKY hierarchy, named after Born, Bogoliubov, Green,
Kirkwood, and Yvon. In quantum mechanics, one uses the
density matrix, and the same idea we just described for clas-
sical mechanics holds. The crucial issue of course is to be
able to formulate the problem for the full case, that is, all
the possible states of the atom and the possible states of the
light. In addition, it is crucial to know what approximations
to make to decouple the equations.

In relation to quantum noise, there are many unsolved issues,
such as getting a proper quantum mechanical Langevin
equation, defining autocorrelation functions for operators, and

EINSTEIN’S AIM WAS TO FIND A
MEASURABLE EXPERIMENTAL

MANIFESTATION OF ATOMS, TO PREDICT
A MACROSCOPIC OBSERVABLE FACT. 



obtaining quantum mechanical Fokker-Planck equations, among
many other issues of a fundamental nature. Of particular interest
is the generalization of the Nyquist result that we discussed in
the section titled “Shot and Thermal Noise: Schottky, Johnson,
and Nyquist.” Recall that Nyquist took kT per degree of freedom
to obtain the noise spectrum, but as we mentioned previously,
Nyquist noted at the end of his article that if one uses Planck’s
law for blackbody radiation, it modifies his formula as indicated
by (23). In 1951, Callen and Welton wrote a classic paper [36]
titled “Irreversibility and Generalized Noise,” which generalizes
Nyquist’s result. While this paper is usually associated with quan-
tum noise, it addresses a much wider issue: “It has frequently
been conjectured that the Nyquist relation can be extended to a
general class of dissipative systems other than merely electrical
systems. Yet to our knowledge, no proof has been given of such a
generalization, nor have any criteria been developed for the type
of system or the character of the ‘forces’ to which the generalized
Nyquist relation may be applied. The development of such a
proof and of such a criteria is the purpose of this paper.” For the
quantum noise case, they obtained the Nyquist result, (23), but
with an extra term for the voltage fluctuation

E2 = 2R
π

(
h̄ω

2
+ h̄ω

e h̄ω/kT − 1

)
. (44)

The extra term, h̄ω/2, remains no matter how one controls the
temperature. This term, which is called the zero point noise
fluctuation or zero point energy, is responsible, to a large extent,
for the richnesses of quantum noise and its manifestations.

CONCLUSION
We hope to have conveyed some of the vibrant history of noise
and to have done some justice to a field that has been involved in
the solution of some of the greatest scientific, mathematical, and
technological problems. It is often said that noise is the study of
fluctuations about the average. This does not do any justice to
the richness of the field. But, if one studies it a bit and appreci-
ates that it was developed by the greatest of minds, including
Einstein, then perhaps one can start to get an appreciation for
what the field is all about. We hope we have conveyed some of
the past great conceptual innovations and practical accomplish-
ments of the field; “noise” will certainly continue to bring new,
powerful, interesting, and dramatic ideas and surprises.
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